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Abstract

We propose a method for selecting variables in latent class analysis, which is the
most common model-based clustering method for discrete data. The method assesses
a variable’s usefulness for clustering by comparing two models, given the clustering
variables already selected. In one model the variable contributes information about
cluster allocation beyond that contained in the already selected variables, and in the
other model it does not. A headlong search algorithm is used to explore the model
space and select clustering variables. In simulated datasets we found that the method
selected the correct clustering variables, and also led to improvements in classification
performance and in accuracy of the choice of the number of classes. In two real datasets,
our method discovered the same group structure with fewer variables. In a dataset from
the International HapMap Project consisting of 639 single nucleotide polymorphisms
(SNPs) from 210 members of different groups, our method discovered the same group
structure with a much smaller number of SNPs.

Keywords: Bayes factor, BIC, Categorical data, Feature Selection, Model-based
clustering, Single nucleotide polymorphism (SNP).

1 Introduction

Latent class analysis is used to discover groupings in multivariate categorical data. It models

the data as a finite mixture of distributions, each one corresponding to a class (or cluster or

group). Because of the underlying statistical model it is possible to determine the number

of classes using model selection methods. But the modeling framework does not currently

address the selection of the variables to be used; typically all variables are used in the model.

Selecting variables for latent class analysis can be desirable for several reasons. It can

help interpretability of the model, and it can also make it possible to fit a model with a larger

number of classes than would be possible with all the variables, for identifiability reasons.
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In general, removing unnecessary variables and parameters can also improve classification

performance and the precision of parameter estimates.

In this paper we propose a method for selecting the variables to be used for clustering in

latent class analysis. This is based on the method of Raftery and Dean (2006) for variable

selection selection in model-based clustering of continuous variables. The method assesses a

variables usefulness for clustering by comparing two models, given the clustering variables

already selected. In one model the variable contributes information about cluster allocation

beyond that contained in the already selected variables, and in the other model it does not.

We then present a new search algorithm, based on Badsberg (1992), for exploring the space

of possible models. The resulting method selects both the variables and the number of classes

in the model.

In Section 2 we review some aspects of latent class analysis and in Section 3 we describe

our variable selection methodology. In Section 4 we give results from simulated data and in

Section 5 we give results for two real datasets, including one with a large number of variables

and a much smaller number of data points. Issues arising with the method are discussed in

Section 6.

2 Latent Class Analysis

2.1 Latent Class Analysis Model

Latent class analysis was proposed by Lazarsfeld (1950a), Lazarsfeld (1950b) and Lazarsfeld

and Henry (1968) and can be viewed as a special case of model-based clustering, for multi-

variate discrete data. Model-based clustering assumes that each observation comes from one

of a number of classes, groups or subpopulations, and models each with its own probability

distribution (Wolfe 1963; McLachlan and Peel 2000; Fraley and Raftery 2002). The overall

population thus follows a finite mixture model, namely

x ∼
G∑

g=1

πgfg(x),

where fg is the density for group g, G is the number of groups, 0 < πg < 1, ∀g and∑G
g=1 πg = 1. Often, in practice, the fg are from the same parametric family (as is the case

in latent class analysis) and we can write the overall density as:

x ∼
G∑

g=1

πgf(x | θg)

where θg is the set of parameters for the gth group.

2



In latent class analysis, the variables are usually assumed to be independent given knowl-

edge of the group an observation came from, an assumption called local independence. Each

variable within each group is then modeled with a multinomial density. The general density

of a single variable x (with categories 1, . . . , d) given that it is in group g is then

x | g ∼
d∏

j=1

p
1{x=j}
jg ,

where 1{x = j} is the indicator function equal to 1 if the observation of the variable takes

value j and 0 otherwise, pjg is the probability of the variable taking value j in group g, and

d is the number of possible values or categories the variable can take.

Since we are assuming conditional independence, if we have k variables, their joint group

density can be written as a product of their individual group densities. If we have x =

(x1, . . . , xk), we can write the joint group density as:

x | g ∼
k∏

i=1

di∏
j=1

p
1{xi=j}
ijg ,

where 1{xi = j} is the indicator function equal to 1 if the observation of the ith variable

takes value j and 0 otherwise, pijg is the probability of variable i taking value j in group g

and di is the number of possible values or categories the ith variable can take. The overall

density is then a weighted sum of these individual product densities, namely

x ∼
G∑

g=1

(πg

k∏
i=1

di∏
j=1

p
1{xi=j}
ijg ),

where 0 < πg < 1, ∀g and
∑G

g=1 πg = 1.

The model parameters {pijg, πg; i = 1, . . . , k, j = 1, . . . , di, g = 1, . . . , G} can be estimated

from the data (for a fixed value of G) by maximum likelihood using the EM algorithm or the

Newton-Rhapson algorithm or a hybrid of the two. These algorithms require starting values

which are usually randomly generated. Because the algorithms are not guaranteed to find

a global maximum and are usually fairly dependent on good starting values, it is routine to

generate a number of random starting values and use the best solution given by one of these.

In appendix B, we present an adjusted method useful for the cases where an inordinately

large number of starting values is needed to get good estimates of the latent class models

and G > 2.

Goodman (1974) discussed the issue of checking whether a latent class model with a

certain number of classes was identifiable for a given number of variables. A necessary con-

dition for identifiability when there are G classes and k variables with numbers of categories
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d = (d1, . . . , dk) for G classes is

k∏
i=1

di > (
k∑

i=1

di − k + 1)×G,

This basically amounts to checking that there are enough pieces of information (or cell counts

or pattern combinations) to estimate the number of parameters in the model. However, in

practice, not all possible pattern combinations are observed (some or many cell counts may

be zero) and so the actual information available may be less. When selecting the number

of latent classes in the data, we consider only numbers of classes for which this necessary

condition is satisfied.

For reviews of latent class analysis, see Clogg (1981), McCutcheon (1987), Clogg (1995)

and Hagenaars and McCutcheon (2002).

2.2 Selecting the number of latent classes

Each different value of G, the number of latent classes, defines a different model for the

data. A method is needed to select the number of latent classes present in the data. Since

a statistical model for the data is used, model selection techniques can be applied to this

question.

In order to choose the best number of classes for the data we need to choose the best

model (and the related number of classes). Bayes factors (Kass and Raftery 1995) are used

to compare these models.

The Bayes factor for comparing model Mi versus model Mj is equal to the ratio of the

posterior odds for Mi versus Mj to the prior odds for Mi versus Mj. This reduces to the

posterior odds when the prior model probabilities are equal. The general form for the Bayes

factor is:

Bij =
p(Y | Mi)

p(Y | Mj)
,

where p(Y | Mi) is known as the integrated likelihood of model Mi (given data Y ). It

is called the integrated likelihood because it is obtained by integrating over all the model

parameters, namely the mixture proportions and the group variable probabilities. Unfortu-

nately the integrated likelihood is difficult to compute (it has no closed form) and some form

of approximation is needed for calculating Bayes factors in practice.

In our approximation we use the Bayesian information criterion (BIC) which is very

simple to compute. The BIC is defined by

BIC = 2× log(maximized likelihood)− (no. of parameters)× log(n), (1)

where n is the number of observations.
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Twice the logarithm of the Bayes factor is approximately equal to the difference between

the BIC values for the two models being compared. We choose the number of latent classes

by recognizing that each different number of classes defines a model, which can then be

compared to others using BIC. Keribin (1998) showed BIC to be consistent for the choice of

the number of components in a mixture model under certain conditions, when all variables

are relevant to the grouping. A rule of thumb for differences in BIC values is that a difference

of less than 2 is viewed as barely worth mentioning, while a difference greater than 10 is seen

as constituting strong evidence (Kass and Raftery 1995).

3 Variable Selection in Latent Class Analysis

3.1 Variable Selection Method

At any stage in the procedure we can partition the collection of variables into three sets:

Y (clust), Y (?) and Y (other), where:

• Y (clust) is the set of variables already selected as useful for clustering,

• Y (?) is the variable(s) being considered for inclusion into/exclusion from Y clust,

• Y (other) is the set of all other variables.

Given this partition and the (unknown) clustering memberships z we can recast the question

of the usefulness of Y (?) for clustering as a model selection question. The question becomes

one of choosing between two different models, M1 which assumes that Y (?) is not useful for

clustering, and M2 which assumes that it is.

The two models are specified as follows:

M1 : p(Y |z) = p(Y (clust), Y (?), Y (other)|z)

= p(Y (other)|Y (?), Y (clust))p(Y (?))p(Y (clust)|z) (2)

M2 : p(Y |z) = p(Y (clust), Y (?), Y (other)|z)

= p(Y (other)|Y (?), Y (clust))p(Y (?), Y (clust)|z),

= p(Y (other)|Y (?), Y (clust))p(Y (?)|z)p(Y (clust)|z),

where z is the (unobserved) set of cluster memberships. Model M1 specifies that, given

Y (clust), Y (?) is independent of the cluster memberships (defined by the unobserved variables

z), that is, Y (?) gives no further information about the clustering. Model M2 implies that Y (?)

does provide information about clustering membership, beyond that given just by Y (clust).
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Figure 1: Graphical Representation of Models M1 and M2 for Latent Class Variable Selection.
In model M1, the candidate set of additional clustering variables, Y (?), is independent of the
cluster memberships, z, given the variables Y (clust) already in the model. In model M2, this
is not the case. In both models, the set of other variables considered, Y (other), is conditionally
independent of cluster membership given Y (clust) and Y (?), but may be associated with Y (clust)

and Y (?).
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The difference between the assumptions underlying the two models is illustrated in Figure

1, where arrows indicate dependency.

We assume that the remaining variables Y (other) are conditionally independent of the

clustering given Y (clust) and Y (?) and belong to the same parametric family in both models.

This basically follows the approach used in Raftery and Dean (2006) for model-based

clustering with continuous data and Gaussian clusters. One difference is that conditional

independence of the variables was not assumed there, so that instead of p(Y (?)) in model

M1 we had p(Y (?) | Y (clust)). This assumed conditional independence instead of full inde-

pendence, i.e. the assumption in model M1 previously was that given the information in

Y (clust), Y (?) had no additional clustering information. Note, that unlike Figure 1 in Raftery

and Dean (2006) there are no lines between the subsets of variables Y (clust) and Y (?) in our

Figure 1, due to the conditional independence assumption.

Models M1 and M2 are compared via an approximation to the Bayes factor which allows

the high-dimensional p(Y (other)|Y (clust), Y (?)) to cancel from the ratio. The Bayes factor, B12,

for M1 against M2 based on the data Y is given by

B12 = p(Y |M1)/p(Y |M2),

where p(Y |Mk) is the integrated likelihood of model Mk (k = 1, 2), namely

p(Y |Mk) =
∫

p(Y |θk, Mk)p(θk|Mk)dθk. (3)

In (3), θk is the vector-valued parameter of model Mk, and p(θk|Mk) is its prior distribution

(Kass and Raftery 1995).

Let us now consider the integrated likelihood of model M1,

p(Y |M1) = p(Y (clust), Y (?), Y (other)|M1). From (2), the model M1 is specified by three prob-

ability distributions: the latent class model that specifies p(Y (clust)|θ1, M1), and the distri-

butions p(Y (?)|θ1, M1) and p(Y (other)|Y (?), Y (clust), θ1, M1). We denote the parameter vectors

that specify these three probability distributions by θ11, θ12, and θ13, and we assume that

their prior distributions are independent. Then the integrated likelihood itself factors as

follows:

p(Y |M1) = p(Y (other)|Y (?), Y (clust), M1) p(Y (?)|M1) p(Y (clust)|M1), (4)

where

p(Y (other)|Y (?), Y (clust), M1) =
∫

p(Y (other)|Y (?), Y (clust), θ13, M1) p(θ13|M1)dθ13.

Similar results hold for p(Y (?)|M1) and p(Y (clust)|M1). Similarly, we obtain

p(Y |M2) = p(Y (other)|Y (?), Y (clust), M2) p(Y (?), Y (clust)|M2), (5)
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where p(Y (?), Y (clust)|M2) is the integrated likelihood for the latent class model for (Y (?), Y (clust)).

The prior distribution of the parameter, θ13, is assumed to be the same under M1 as

under M2. It follows that

p(Y (other)|Y (?), Y (clust), M2) = p(Y (other)|Y (?), Y (clust), M1).

We thus have

B12 =
p(Y (?)|M1)p(Y (clust)|M1)

p(Y (?), Y (clust)|M2)
, (6)

which has been greatly simplified by the cancellation of the factors involving the poten-

tially high-dimensional Y (other). The integrated likelihoods in (6) are still hard to evaluate

analytically though, and so we approximate them using the BIC approximation of (1).

3.2 Headlong Search Algorithm

Given these models we need to find a method for creating partitions of the variables at each

step. Initially we need enough variables to start Y (clust) so that a latent class model for G > 1

can be identified. If a latent class model on the set of all variables is identifiable for G > 1, we

choose the largest number of classes that can be identified, and we then estimate the model.

For each category of each variable, we then calculate the variance of its probability across

groups. For each variable, we add up these variances and rank the variables according to this

sum. The rationale is that variables with high values of this sum have high between-group

variation in probability, and hence may be more useful for clustering.

Given this ranking we choose the top k∗ variables, where k∗ is the smallest number of

variables that allow a latent class model with G > 1 to be identified. This is our starting

Y (clust). The other variables can be left in their ordering based on variability for future order

of introduction in the headlong algorithm.

If the above strategy is not possible, we instead proceed as follows. We calculate the

minimum number of variables needed for identification of a latent class model with G > 1.

We then select a number of random subsets each with this number of variables. Then for

the initial Y (clust) we choose the variable set that gives the greatest overall average variance

of categories’ probabilities across the groups (given the best latent class model identified).

If the minimum number of variables is small enough, we enumerate all possible subsets to

choose the best initial Y (clust), instead of sampling.

Once we have an initial set of clustering variables Y (clust), we can proceed with the

inclusion and exclusion steps of the headlong algorithm.

First we must define the constants upper and lower. The constant upper is the quantity

above which the difference in BIC for models M2 and M1 will result in a variable being
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included in Y (clust) and below which the difference in BIC for models M2 and M1 will result

in a variable being excluded from Y (clust). The constant lower is the quantity below which

the difference in BIC for models M2 and M1 will result in a variable being removed from

consideration for the rest of the procedure. A natural value for upper is 0, by which we mean

that any positive difference in BIC for models M2 and M1 is taken as evidence of a variable’s

usefulness for clustering and any negative difference is taken as evidence of a variable’s lack

of usefulness. A difference of lower is taken to indicate that a variable is unlikely to ever

be useful as a clustering variable and is no longer even checked. In general a large negative

number such as −100 (which by our rule of thumb would constitute strong evidence against)

makes a sensible value for lower.

• Inclusion Step: Propose each variable in Y (other) singly in turn for Y (?). Calculate the

difference in BIC for models M2 and M1 given the current Y (clust).

If the variable’s BIC difference is:

– between upper and lower, do not include in Y (clust) and return variable to the

end of the list of variables in Y (other);

– below lower, do not include in Y (clust) and remove variable from Y (other);

– above upper, include variable in Y (clust) and stop inclusion step.

If we reach the end of the list of variables in Y (other), the inclusion step is stopped.

• Exclusion Step: Propose each variable in Y (clust) singly in turn for Y (?) (with the

remaining variables in Y (clust) not including current Y (?) now defined as Y (clust) in M1

and M2). Calculate the difference in BIC for models M2 and M1. If the variable’s BIC

difference is:

– between upper and lower, exclude the variable from (the original) Y (clust) and

return variable to the end of the list of variables in Y (other) and stop exclusion

step;

– below lower, exclude the variable from (the original) Y (clust) and from Y (other)

and stop exclusion step;

– above upper, do not exclude the variable from (the original) Y (clust).

If we reach the end of the list of variables in Y (clust) the exclusion step is stopped.

If Y (clust) remains the same after consecutive inclusion and exclusion steps the headlong

algorithm stops because it has converged.
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Table 1: Model parameters used to generate binary data example

Mixture proportions
Class 1 Class 2

0.6 0.4
Variable Prob. of Prob. of

success in success in
class 1 class 2

1 0.6 0.2
2 0.8 0.5
3 0.7 0.4
4 0.6 0.9
5 0.5 0.5
6 0.4 0.4
7 0.3 0.3
8 0.2 0.2
9 0.9 0.9
10 0.6 0.6
11 0.7 0.7
12 0.8 0.8
13 0.1 0.1

4 Simulated Data Results

4.1 Binary Simulated Data Example

Five hundred points were simulated from a two-class model satisfying the local independence

assumption. There were four variables separating the classes (variables 1–4) and nine noise

variables, i.e. variables that have the same probabilities in each class (variables 5–13). The

actual model parameters are shown in Table 1.

When we estimated the latent class model based on all thirteen variables, BIC selected

a two-class model. Since we simulated the data and hence know the actual membership

of each point, we can compare the correct classification with that produced by the model

estimated using all the variables. The number of observations incorrectly classified by this

model was 123. The number of observations that would be incorrectly classified by using

the model with the actual (true) parameter values is 110. The estimated parameters from

the model with all variables are given in Table 2.

The variables ordered according the variability of their estimated probabilities (in de-

creasing order) are: 1, 3, 2, 4, 11, 7, 5, 6, 13, 9, 8, 10, 12. As expected, the first four
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Table 2: Estimated parameters for the model involving all variables for the binary data
example

Mixture proportions
Class 1 Class 2

0.56 0.44
Variable Prob. of Prob. of

success in success in
class 1 class 2

1 0.60 0.19
2 0.85 0.56
3 0.71 0.35
4 0.61 0.86
5 0.57 0.44
6 0.37 0.45
7 0.35 0.21
8 0.16 0.19
9 0.89 0.93
10 0.59 0.62
11 0.82 0.64
12 0.80 0.80
13 0.06 0.13
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variables are the clustering variables. We note that the difference between the true probabil-

ities across groups is 0.4 for variable 1 and 0.3 for variables 2 to 4. Since variable 1 therefore

gives better separation of the classes, we would expect it to be first in the list. The number

of variables needed in order to estimate a latent class model with at least 2 classes is 3. So

the starting clustering variables are {1, 3, 2}. The individual step results for the variable

selection procedure starting with this set are given in Table 3.

Table 3: Results for each step of the variable selection procedure for the binary data exam-
ple. Note that the third and fourth row list the variables with the highest and lowest BIC
difference respectively (i.e. all others were examined as well).

Variable(s) Step Clustering # of Independence Difference Result
Proposed Type BIC Classes BIC
1, 3, 2 Inclusion -1976.35 2 -1981.25 4.90 Accepted

4 Inclusion -2565.37 2 -2573.62 8.25 Accepted
11 Inclusion -3148.76 2 -3146.72 -2.04 Rejected
4 Exclusion -2565.37 2 -2573.62 8.25 Rejected

When clustering on the four selected variables only, BIC again chose 2 classes as the

best fitting model. Comparing the classification of the observations based on the estimates

from this model with the correct classification we found that 110 observations had been

misclassified. This seems to be optimal given that this is also the error from classifying

based on the actual model parameters. The estimated parameters from the model using

only selected variables are given in Table 4.

4.2 Non-Binary Simulated Data Example

One thousand points were simulated from a three-class model satisfying the local indepen-

dence assumption. There are four variables that separate the classes (variables 1–4) and six

noise variables that have the same probabilities in each class (variables 5–10). The actual

model parameters are given in Table 5 and Table 6. Several other sets of parameters were

used to simulate similar datasets where the algorithm gave results similar to this example;

results are omitted.

When we estimated the latent class model based on all ten variables, BIC selected a

2-class model; recall that the actual number of classes is 3. The difference between BIC

values for a 2-class and a 3-class model based on all the variables was 68. Again, since we

have simulated the data and know the true membership of each point, we can compare the

partition given by the true classification with that produced by the 2-class model estimated
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Table 4: Estimated parameters for the model involving only the selected variables for the
binary data example

Mixture proportions
Class 1 Class 2

0.64 0.36
Variable Prob. of Prob. of

success in success in
class 1 class 2

1 0.56 0.17
2 0.83 0.52
3 0.72 0.26
4 0.63 0.89

Table 5: Actual clustering parameters for the model with data from variables with different
numbers of categories

Mixture proportions
Class 1 Class 2 Class 3

0.3 0.4 0.3
Variable Category Prob. of Prob. of Prob. of

category in category in category in
class 1 class 2 class 3

Var. 1 Cat. 1 0.1 0.3 0.6
Cat. 2 0.1 0.5 0.2
Cat. 3 0.8 0.2 0.2

Var. 2 Cat. 1 0.5 0.1 0.7
Cat. 2 0.5 0.9 0.3

Var. 3 Cat. 1 0.2 0.7 0.2
Cat. 2 0.2 0.1 0.6
Cat. 3 0.3 0.1 0.1
Cat. 4 0.3 0.1 0.1

Var. 4 Cat .1 0.1 0.6 0.4
Cat. 2 0.5 0.1 0.4
Cat. 3 0.4 0.3 0.2
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Table 6: Actual non-clustering parameters for the model with data from variables with
different numbers of categories

Mixture proportions
Class 1 Class 2 Class 3

0.3 0.4 0.3
Variable Category Prob. of Prob. of Prob. of

category in category in category in
class 1 class 2 class 3

Var. 5 Cat. 1 0.4 0.4 0.4
Cat. 2 0.5 0.5 0.5
Cat. 3 0.1 0.1 0.1

Var. 6 Cat. 1 0.2 0.2 0.2
Cat. 2 0.4 0.4 0.4
Cat. 3 0.1 0.1 0.1
Cat. 4 0.3 0.3 0.3

Var. 7 Cat. 1 0.2 0.2 0.2
Cat. 2 0.3 0.3 0.3
Cat. 3 0.3 0.3 0.3
Cat. 4 0.1 0.1 0.1
Cat. 5 0.1 0.1 0.1

Var. 8 Cat. 1 0.2 0.2 0.2
Cat. 2 0.8 0.8 0.8

Var. 9 Cat. 1 0.7 0.7 0.7
Cat. 2 0.1 0.1 0.1
Cat. 3 0.2 0.2 0.2

Var. 10 Cat. 1 0.1 0.1 0.1
Cat. 2 0.2 0.2 0.2
Cat. 3 0.1 0.1 0.1
Cat. 4 0.6 0.6 0.6

14



Table 7: Results for each step of the variable selection procedure for the data from variables
with different numbers of categories. Note that the third and fourth row list the variables
with the highest and lowest BIC difference respectively (i.e. all others were examined as
well).

Variable(s) Step Clustering # of Independence Difference Result
Proposed Type BIC Classes BIC
2, 3, 1 Inclusion -6122.65 2 -6193.37 70.72 Accepted

4 Inclusion -8235.05 3 -8330.71 95.66 Accepted
8 Inclusion -9261.46 3 -9248.28 -13.18 Rejected
2 Exclusion -8235.05 3 -8322.40 87.36 Rejected

using all the variables. A cross-tabulation of the true memberships versus the estimated

memberships from the 2-class model with all variables is as follows:

True classes

Estimated classes
1 2

1 293 25
2 85 324
3 245 28

The misclassification rate from the model with the actual (true) parameters was 19.9%.

If we match each true class to the best estimated class in the 2-class model with all variables

we get a misclassification rate of 38.3%. If we assume that we knew the number of classes

in advance to be 3 then the misclassification rate for the 3-class model with all variables is

25.7%. However this is knowledge that is not typically available in practice.

The variables ordered according the variability of their estimated probabilities in the 2-

class model (in decreasing order) were: 2, 3, 1, 4, 6, 9, 7, 10, 8, 5. The first four variables are

the clustering variables. The number of variables needed in order to estimate a latent class

model with at least 2 classes is 3. So the starting clustering variables were {2, 3, 1}. The

individual step results for the variable selection procedure starting with this set are given in

Table 7.

When clustering on the four selected variables only, BIC this time chose 3 classes as

the best fitting model. Comparing the partition from classifying observations based on the

estimates from this model and the correct partition we found that the misclassification rate

was 23.8%. The estimated parameters from the model using only selected variables are given

in Table 8.

The misclassification results are summarized in Table 9. In addition to the misclassifica-

tion rate, we show the Rand Index (Rand 1971) and the Adjusted Rand Index (Hubert and
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Table 8: Estimated parameters for the model involving only the selected variables for the
data from variables with different numbers of categories

Mixture proportions
Class 1 Class 2 Class 3

0.40 0.43 0.16
Variable Category Prob. of Prob. of Prob. of

category in category in category in
class 1 class 2 class 3

Var. 1 Cat. 1 0.10 0.34 0.85
Cat. 2 0.1 0.49 0.13
Cat. 3 0.80 0.17 0.02

Var. 2 Cat. 10 0.49 0.12 0.82
Cat. 2 0.51 0.88 0.18

Var. 3 Cat. 1 0.21 0.64 0.17
Cat. 2 0.27 0.14 0.63
Cat. 3 0.25 0.13 0.08
Cat. 4 0.27 0.09 0.12

Var. 4 Cat .1 0.14 0.53 0.39
Cat. 2 0.47 0.10 0.47
Cat. 3 0.39 0.37 0.14
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Arabie 1985).

Table 9: Misclassification Summary for the data from variables with different numbers of
categories. (c) indicates that the number of classes was constrained to this value in ad-
vance. Recall that the minimum misclassification rate from the model based on the actual
parameters is 19.9%.

Variables No. of Misclassification Rand Adjusted Rand
Included Classes selected Rate Index Index

All 2 38.3% 0.65 0.30
All 3(c) 25.7% 0.72 0.40

1,2,3,4 3 23.8% 0.74 0.43

5 Real Data Examples

5.1 Hungarian Heart Disease Data

This dataset consists of five categorical variables from a larger dataset (with 10 other contin-

uous variables) collected from the Hungarian Institute of Cardiology, Budapest by Andras

Janosi, M.D. (Detrano et al. 1989; Gennari et al. 1989). The outcome of interest is di-

agnosis of heart disease (angiographic disease status) into two categories: < 50% diameter

narrowing and > 50% diameter narrowing in any major vessel. The original paper (Detrano

et al. 1989) looked at the data in a supervised learning context and achieved a 77% accuracy

rate. Originally there was information about 294 subjects but 10 subjects had to be removed

due to missing data. The five variables given are gender (male/female) [sex], chest pain type

(typical angina/atypical angina/non-anginal pain/asymptomatic) [cp], fasting blood sugar >

120 mg/dl (true/false) [fbs], resting electrocardiographic results (normal/having ST-T wave

abnormality/showing probable or definite left ventricular hypertrophy by Estes’ criteria)

[restecg] and exercise induced angina (yes/no) [exang].

When BIC is used to select the number of classes in a latent class model with all of the

variables, it decisively selects 2 (with a difference of at least 38 points between 2 classes and

any other identifiable number of classes). When the variables are put in decreasing order of

variance of estimated probabilities between classes the ordering is the following: cp, exang,

sex, restecg and fbs.

Observations were classified into whichever group their estimated membership probability

was greatest for. The partition estimated by this method is compared with the clinical

partition below:
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<50% narrowing >50% narrowing
Class 1 134 13
Class 2 47 90

If class 1 is matched with the <50% class and class 2 with the >50% class there is a

correct classification rate of 78.9%. This gives a sensitivity of 87.4% and a specificity of

74%.

The variable selection method chooses 3 variables: cp, exang and sex. BIC selects 2

classes for the latent class model on these variables. The partition given by this model is the

same as the one given by the model with all variables. The largest difference in estimated

group membership probabilities between the two latent class models is 0.1. The estimated

model parameters in the variables common to both latent class models and the mixing

proportions differ between models by at most 0.003. Both models have the same correct

classification, specificity and sensitivity rate. Thus our method identifies the fact that it is

possible to reduce the number of variables from 5 to 3 with no cost in terms of clustering.

The estimated parameters for the latent class model with all variables included is given

in Table 10 and the estimated parameters for the latent class model with only the selected

variables included is given in Table 11.

5.2 HapMap Data

The HapMap project (The International HapMap Consortium 2003) was set up to examine

patterns of DNA sequence variation across human populations. A consortium with mem-

bers including the United States, United Kingdom, Canada, Nigeria, Japan and China is

attempting to identify chromosomal regions where genetic variants are shared across individ-

uals. One of the most common types of these variants is the single nucleotide polymorphism

(SNP). A SNP occurs when a single nucleotide (A, T, C or G) in the genome differs across

individuals. If a particular locus has either A or G then these are called the two alleles.

Most SNPs have only two alleles.

This dataset is from a random selection of 3,389 SNPs on 210 individuals (out of 4 million

available in the HapMap public database). Of these 801 had complete sets of measurements

from all subjects and a further subset of 639 SNPs had non-zero variability. Details of the

populations and numbers of subjects are given in Table 12.

There are two possible correct groupings of the data. The first one is into 3 groups:

European (CEU), African (YRI) and Asian (CHB+JPT), and the second is into 4 groups:

European (CEU), African (YRI), Japanese (JPT) and Chinese (CHB).
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Table 10: Estimated parameters for the model involving all variables for Hungarian Heart
Disease Data

Mixture proportions
Class 1 Class 2
0.494 0.506

Variable Category Prob. of Prob. of
category in category in

class 1 class 2
Chest Typical angina 0.07 0.00
Pain Atypical angina 0.64 0.08
Type Non-anginal pain 0.29 0.08

Asymptomatic 0.00 0.83
Exercise Induced No 0.98 0.42

Angina Yes 0.02 0.58
Gender Female 0.38 0.16

Male 0.62 0.84
Resting Normal 0.82 0.80

Electrocardiographic Having ST-T 0.15 0.20
Results wave abnormality

Showing probable 0.03 0.01
or definite left ventricular

hypertrophy by
Estes’ criteria

Fasting blood sugar False 0.94 0.92
> 120 mg/dl True 0.06 0.08
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Table 11: Estimated parameters for the model involving the selected variables for Hungarian
Heart Disease Data

Mixture proportions
Class 1 Class 2
0.498 0.502

Variable Category Prob. of Prob. of
category in category in

class 1 class 2
Chest Typical angina 0.07 0.00
Pain Atypical angina 0.64 0.08
Type Non-anginal pain 0.28 0.08

Asymptomatic 0.00 0.84
Exercise Induced No 0.97 0.42

Angina Yes 0.03 0.58
Gender Female 0.38 0.16

Male 0.62 0.84

Table 12: Information on the subject populations for the HapMap data

Code Descriptions Number of
Individuals

CEU Utah residents with ancestry from Northern and Western Europe 60
CHB Han Chinese in Beijing, China 45
JPT Japanese in Tokyo, Japan 45
YRI Yoruban in Ibadan, Nigeria (West Africa) 60
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Table 13: BIC values for different sets of variables and different numbers of classes for the
HapMap data.

Data 2 3 4
classes classes classes

All variables -142711 -141418 -146662
Selected variables -93471 -91147 -94491

When all 639 SNPs are used to build latent class models, BIC selects the best number

of classes as 3. The resulting estimated partition matches up exactly with the first 3-group

partition. The variable selection procedure selects 413 SNPs as important to the clustering,

reducing the number of variables by over a third. Using only the selected variables, BIC again

selects a 3-class model whose estimated partition again gives perfect 3-group classification.

The BIC values for models using both sets of data from 2 to 4 classes are given in Table 13.

Note that comparing within rows in Table 13 is appropriate, but comparing between rows is

not because different rows correspond to different datasets.

The HapMap project is also interested in the position of SNPs that differ between pop-

ulations, so we can look at the distribution of all 639 SNPs across the 22 chromosomes and

compare it to the distribution of the selected 413 SNPs. This is presented in Figure 2.

Although the subset of SNPs that these data come from are a random sample, it may

be that some are close to each other on the same chromosome. Since genetic variants

close to each other on a chromosome tend to be inherited together, this suggests that the

conditional independence assumption for LCA may not hold in this case. Incorporating these

dependencies may be beneficial.

6 Discussion

We have proposed a method for selecting variables in latent class analysis. In our simulated

datasets the method selected the correct variables, and this also led to improved classification

and more accurate selection of the number of classes. In both real data examples, the data

were classified equally accurately by the smaller set of variables selected by our method as

by a larger set. The HapMap data provided an example of the “n << p” type, and there

our method reduced the number of variables (SNPs in that case) by over a third without

any degradation in classification performance.

In general it appears to be a better idea to select variables before estimating the clustering

model in both the discrete and continuous cases. We have seen that inclusion of noise
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variables can degrade the accuracy of both model estimation and choice of the number of

clusters.

In terms of estimation of the model, including variables with no cluster structure can ei-

ther smear out separated clusters/classes or introduce spurious classes. It is difficult without

any extra knowledge to know what can happen in advance. From looking at the simulations

and data sets presented here as well as others, it would appear that these problems are most

likely to occur when separation between the classes is poor.

The headlong search algorithm is different from the greedy search algorithm described in

Raftery and Dean (2006) in two ways:

1. The best variable (in terms of the BIC difference) is not necessarily selected in each

inclusion and exclusion step in the headlong search.

2. It is possible that some variables are not looked at in any step after a certain point in

the headlong algorithm (after being removed from consideration).

The headlong search is substantially faster than the greedy search and in spite of point 2

above, usually gives results comparable to or sometimes better than the results of the greedy

search (perhaps due to the local nature of the search).

Galimberti and Soffritti (2006) considered the problem of finding multiple cluster struc-

tures in latent class analysis. In this problem the data are divided into subsets, each of

which obeys a different latent class model. The models in the different subsets may include

different variables. This is a somewhat different problem from the one we address here, but

it also involves a kind of variable selection in latent class analysis.

Keribin (1998) showed that BIC was consistent for choice of the number of components in

a mixture model under certain conditions, notably assuming that all variables were relevant

to the clustering. Empirical evidence seems to suggest that when noise/irrelevant variables

are present, BIC is less likely to select the correct number of classes. The general correctness

of the BIC approximation in a specific case of binary variables with two classes in a naive

Bayes network (which is equivalent to a 2-class latent class model with the local independence

assumption satisfied) was looked at by Rusakov and Geiger (2005). The authors found that

although the traditional BIC penalty term of # of parameters × log(# of observations) (or

half this depending on the definition) was correct for regular points in the data space, it

was not correct for singularity points (with two different types of singularity points requiring

two adjusted versions of the penalty term). The first type of singularity points were those

sets of parameters that could arise from a naive Bayes model with all but at most 2 links

removed (type 1) and those that could arise from a model with all links removed (type 2),

representing a set of mutually independent variables. Similarly in the case of redundant or
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irrelevant variables being included (which is closely related to the two singularity point types)

they found that the two adjusted penalty terms were correct. These issues with clustering

with noise variables reinforce the arguments for variable selection in latent class analysis.
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Appendix A: Headlong Search Algorithm for Variable

Selection in Latent Class Analysis

Here we give a more complete description of the headlong search variable selection and clus-

tering algorithm for the case of discrete data modeled by conditionally independent multi-

nomially distributed groups. Note that for each latent class model fitted in this algorithm

one must run a number of random starts to find the best estimate of the model (in terms

of BIC). We recommend at least 5 for small to medium problems but for bigger problems

hundreds may be needed to get a decent model estimate. The issue of getting good starting

values without multiple generation of random starts is dealt with in appendix B.

• Choose Gmax, the maximum number of clusters/classes to be considered for the data.

Make sure that this number is identifiable for your data! Define constants upper

(default 0) and lower (default -100), where upper is the quantity above which the

difference in BIC for models M2 and M1 will result in a variable being included in

Y (clust) and below which the difference in BIC for models M2 and M1 will result in

a variable being excluded from Y (clust), and lower is the quantity below which the

difference in BIC for models M2 and M1 will result in a variable being removed from

consideration for the rest of the procedure.

• First step : One way of choosing the initial clustering variable set is by estimating

a latent class model with at least 2 classes for all variables (if more classes are iden-

tifiable, estimate all identifiable class numbers and choose the model with the best

number of classes via BIC). Order the variables in terms of variability of their esti-

mated probabilities across classes. Choose the minimum top variables that allow at

least a 2-class model to be identified. This is the initial Y (clust). We do not require that

the BIC difference between clustering and a model with a single class for our Y (clust) to

be positive at this point because we need a set of starting variables for the algorithm.

These can be removed later if there are not truly clustering variables.

Specifically we estimate the {pijg, i = 1, . . . , k, j = 1, . . . , di, g = 1, . . . , G} where k is

the number of variables, di is the number of categories for the ith variables and G is the

number of classes. For each variable i we calculate V (i) =
∑di

j=1 V ar(pijg). We order

the variables in decreasing order of V (i): y(1), y(2), . . . , y(k) and find m the minimum

number of top variables that will identify a latent class model with G ≥ 2.

Y (clust) = {y(1), y(2), . . . , y(m)}

Y (other) = {y(m+1), . . . , y(k)}
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If the previous method is not possible (data cannot identify latent class model for

G > 1) then split the variables randomly into subsets with enough variables to identify

a latent class model for at least 2 classes, estimate the latent models for each subset

and calculate the BICs, estimate the single class (G=1) models for each subset and

calculate these 1 class BICs and choose the subset with the highest difference between

latent class model (G≥2) and 1 class model BICs as the initial Y (clust).

Specifically look at the list of numbers of categories d = (d1, . . . , dk) and work out

the minimum number of variables m that allows a latent class model for G ≥ 2 to be

identified. Split the variables into S subsets of at least m variables in each. For each

set Ys, s = 1, . . . , S estimate:

BICdiff(Ys) = BICclust(Ys)−BICnot clust(Ys)

where BICclust(Ys) = max2≤G≤Gmaxs{BICG(Ys)}, with BICG(Ys) being the BIC given

in (1) for the latent class model for Ys with G classes and Gmaxs being the maximum

number of identifiable classes for Ys, and BICnot clust(Ys) = BIC1(Ys).

We choose the best variable subset, Ys1 , such that

s1 = arg max
s:Ys∈Y

(BICdiff(Ys))

and create

Y (clust) = Ys1

and Y (other) = Y \Ys1

where Y \Ys1 denotes the set of variables Y excluding the subset Ys1 .

• Second step : Next we look at each variable in Y (other) singly in order as the new

variable under consideration for inclusion into Y (clust). For each variable we look at the

difference between the BIC for clustering on the set of variables including the variables

selected in the first set and the new variable (maximized over number of clusters from

2 up to Gmax) and the sum of the BIC for the clustering of the variables chosen in

the first step and the BIC for the single class latent class model for the new variable.

If this difference is less than lower the variable is removed from consideration for the

rest of the procedure and we continue checking the next variable. Once the difference

is greater than upper we stop and this variable is included in the set of clustering

variables. Note that if no variable has difference greater than upper we include the

variable with the largest difference in the set of clustering variables. We force a variable

to be selected at this stage to give one final extra starting variable.
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Specifically, we split Y (other) into its variables y1, . . . , yD2 . For each j in 1, . . . , D2 until

BICdiff(y
j) > upper, we compute the approximation to the Bayes factor in (6) by

BICdiff(y
j) = BICclust(y

j)−BICnot clust(y
j)

where BICclust(y
j) = max2≤G≤Gmaxj

{BICG(Y (clust), yj)} with BICG(Y (clust), yj) being

the BIC given in (1) for the latent class clustering model for the dataset including both

the previously selected variables (contained in Y (clust)) and the new variable yj with

G classes, and BICnot clust(y
j) = BICreg + BICclust(Y

(clust)) where BICreg is BIC1(y
j)

and BICclust(Y
(clust)) is the BIC for the latent class clustering model with only the

currently selected variables in Y (clust).

We choose the first variable, yj2 , such that

BICdiff(y
j2) > upper

or if no such j2 exists,

j2 = arg max
j:yj∈Y (other)

(BICdiff(y
j))

and create

Y (clust) = Y (clust) ∪ yj2

and Y (other) = Y (other)\yj2

where Y (clust) ∪ yj2 denotes the set of variables including those in Y (clust) and variable

yj2 .

• General Step [Inclusion part] : Each variable in Y (other) is proposed singly (in

order), until the difference between the BIC for clustering with this variable included

in the set of currently selected clustering variables (maximized over numbers of clusters

from 2 up to Gmax) and the sum of the BIC for the clustering with only the currently

selected clustering variables and the BIC for the single class latent class model of the

new variable, is greater than upper.

• The variable with BIC difference greater than upper is then included in the set of

clustering variables and we stop the step. Any variable whose BIC difference is less

than lower is removed from consideration for the rest of the procedure. If no variable

has BIC difference greater than upper no new variable is included in the set of clustering

variables
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Specifically, at step t we split Y (other) into its variables y1, . . . , yDt . For j in 1, . . . , Dt

we compute the approximation to the Bayes factor in (6) by

BICdiff(y
j) = BICclust(y

j)−BICnot clust(y
j) (7)

where BICclust(y
j) = max2≤G≤Gmaxj

{BICG(Y (clust), yj)}, with BICG(Y (clust), yj) being

the BIC given in (1) for the latent class clustering model for the dataset including

both the previously selected variables (contained in Y (clust)) and the new variable yj

with G clusters, and BICnot clust(y
j) = BICreg + BICclust(Y

(clust)) where BICreg is the

single class latent class model for variable yj and BICclust(Y
(clust)) is the BIC for the

clustering with only the currently selected variables in Y (clust).

We check if BICdiff(y
j) > upper,

if so we stop and set

Y (clust) = Y (clust) ∪ yj if BICdiff(y
j) > 0

and Y (other) = Y (other)\yj if BICdiff(y
j) > 0

if not we increment j and re-calculate BICdiff(y
j) If BICdiff(y

j) < lower we remove it

from both Y (clust) and Y (other)

If no j has BICdiff(y
j) > upper leave Y (clust) = Y (clust) and Y (other) = Y (other).

• General Step [Removal part] : Each variable in Y (clust) is proposed singly (in order),

until the difference between the BIC for clustering with this variable included in the

set of currently selected clustering variables (maximized over numbers of clusters from

2 up to Gmax) and the sum of the BIC for the clustering with only the other currently

selected clustering variables (and not the variable under consideration) and the BIC

for the single class latent class model of the variable under consideration, is less than

upper.

• The variable with BIC difference less than upper is then removed from the set of

clustering variables and we stop the step. If the difference is greater than lower we

include the variable at the end of the list of variables in Y (other). If not we remove

it entirely from consideration for the rest of the procedure. If no variable has BIC

difference less than upper no variable is excluded from the current set of clustering

variables

In terms of equations for step t+1, we split Y (clust) into its variables y1, . . . , yDt+1 . For

each j in 1, . . . , Dt+1 we compute the approximation to the Bayes factor in (6) by

BICdiff(y
j) = BICclust −BICnot clust(y

j)
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where BICclust = max2≤G≤Gmax{BICG(Y (clust))} with BICG,m(Y (clust)) being the BIC

given in (1) for the model-based clustering model for the dataset including the previ-

ously selected variables (contained in Y (clust)) with G clusters, and BICnot clust(y
j) =

BICreg + BICclust(Y
(clust)\yj) where BICreg is the single class latent class model for

variable yj and BICclust(Y
(clust)\yj) is the BIC for the clustering with all the currently

selected variables in Y (clust) except for yj.

We check if BICdiff(y
j) < upper,

if so we stop and set

Y (clust) = Y (clust)\yj if BICdiff(y
j) < upper

and Y (other) = Y (other) ∪ yj if lower < BICdiff(y
j) < upper

if not we increment j and re-calculate BICdiff(y
j). If BICdiff(y

j) < lower we remove

it from both Y (clust) and Y (other).

If no j has BICdiff(y
j) < upper leave Y (clust) = Y (clust) and Y (other) = Y (other).

• After the first and second steps the general step is iterated until consecutive inclusion

and removal proposals are rejected. At this point the algorithm stops as any further

proposals will be the same ones already rejected.

Appendix B: Smart Starting Values for Latent Class

Analysis in the Headlong Search Algorithm

In the previous appendix we discussed the details of the headlong algorithm for latent class

variable selection. In each step multiple latent class models for different sets of data/variables

and classes are estimated. Previously we have only mentioned that starting values are

generated randomly for each model several times and the best (in terms of BIC/likelihood)

of the resulting estimated models is chosen as the single estimate for a particular latent class

model. This means that for each different dataset and each different number of classes we

are required to generate random starting values and estimate the model via EM numerous

times. For datasets with reasonable numbers of variables this is not too computationally

expensive but for more complex datasets it is burdensome. Also with increasing numbers

of observations and/or variables and/or classes more random starts are needed to have any

confidence in finding the global maximum likelihood for the model as the likelihood surface

becomes more complex, with increasing numbers of local maxima.
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Because of the stepwise nature of the algorithm we can use models estimated before to

give good starting values for new models. By starting values here we mean the matrix z of

conditional probabilities of membership in the different classes for each observation.

At the end of each step (either inclusion or exclusion) we have a set of currently selected

clustering variables. At some point in the step we have estimated the latent class model for

this set over a range of classes (or sometimes just one, 2 classes) and chosen the model with

the number of classes that gives us the highest BIC. We can call this model LCAcurrent and

the number of classes in this best model for the current set of clustering variables Gcurrent.

We can also save the z matrix for this model and call it zcurrent.

In our next step we will be either looking at models for Y (clust) with a new additional vari-

able (inclusion step) or models for Y (clust) leaving out one of the current clustering variables

(exclusion step). It seems obvious that a reasonable starting z matrix for models involving

the new dataset (which is either a sub- or super-set of the old one) and number of classes

Gcurrent would be zcurrent, because the dataset will only have changed by one variable. So

instead of randomly generating multiple z matrixes (or other starting parameters) to try to

get the global maximum likelihood for our latent class model, we merely use what we believe

to be a good set starting z matrix (which hopefully will be reasonably close to the global

maximum in the new likelihood space).

However, we may still wish to have good starting values for the new dataset with different

numbers of classes, Gcurrent ± c. But our zcurrent will be an n × Gcurrent matrix (where n is

the number of observations) and we need n × (Gcurrent ± c) matrices. How can we sensibly

create a new matrix with c more/less columns given our zcurrent?

We will look at the case for +1 and −1 separately (the analogue for general +c and −c

should be obvious). It will be rare in practice to need more than ±1 at each step as the

number of identifiable classes will only generally increase fairly slowly with the number of

variables selected.

For −1 we want to reduce the number of columns of our zcurrent by 1. A sensible way to

do this is to collapse the two closest classes (in terms of Euclidean distance in the parameter

space). We calculate the distances between the classes’ estimated parameters/probabilities

from LCAcurrent and select the closest two. We then simply remove the two columns corre-

sponding to those classes from zcurrent and replace them with one column equal to the sum

(across rows) of the removed columns. This is our new starting z matrix for the model with

Gcurrent − 1 classes. In terms of a single observation with probability p1 of being in the first

chosen class and probability p2 of being the second chosen class we are saying the observation

has probability p1 + p2 of being in the new class created from the amalgamation of the two

i.e. the observation will be in the new class if he is in either of the old classes. Note that if
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we wish to, we can weight the distances with the mixing proportions, making it more likely

that we would join smaller close classes.

For −c we can use the resulting matrix from the process described in the previous para-

graph to estimate the model for Gcurrent − 1 classes and then reduce the resulting estimated

z from this model by one column in the same fashion, continuing on in the same way until

we have removed c columns.

For +1 we want to increase the number of columns of our zcurrent by 1. An obvious way

to do this is by splitting a class in two. We choose the largest class (in terms of mixing

proportions). We then remove the column corresponding to that class from zcurrent and call

this w and estimate a two class latent class model using the data points weighted by w.

Obviously we have returned to problem of needing starting values for estimating our 2-class

model. However usually a small number of randomly generated starts, say 5, for this number

of classes will result in an estimated model achieving the global maximum likelihood and

this is usually not too computationally expensive. Once we have our 2-class model estimate

of the z matrix, called z2, we can (scalar/column) multiply this by w and add the resulting

two columns to the original zcurrent (less the removed column), giving us a starting z matrix

for estimating the Gcurrent + 1 class model. We can think of w as being the conditional

probability of an observation being in the old selected class and then the new z2 matrix as

being the probability for an observation being in either of the two new sub-classes given it

was in the old class.

Again for +c we can use the resulting matrix from the process described in the previous

paragraph to estimate the model for Gcurrent + 1 classes and then increase the resulting

estimated z from this model by one column in the same fashion, continuing on in the same

way until we have added c columns.
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