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Abstract

A model-based discriminant analysis method that includes variable selection is pre-
sented. The discriminant analysis model is fitted in a semi-supervised manner using
both labeled and unlabeled data. The method is shown to give excellent classifica-
tion performance on several high-dimensional multiclass datasets with more variables
than observations. The variables selected by the proposed method provide information
about which variables are meaningful for classification purposes. A headlong search
strategy for variable selection is shown to be efficient in terms of computation and
achieves excellent classification performance. In applications to several food classifica-
tion datasets, our proposed method outperformed default implementations of Random
Forests, AdaBoost and Bayesian Multinomial Regression by substantial margins.
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1 Introduction

Discriminant analysis is used to classify observations into predefined groups. Typically,

a discriminant function is developed using observations with known group membership

and this is then used to classify observations with unknown group membership.

Model-based discriminant analysis (Bensmail and Celeux 1996; Fraley and Raftery

2002) provides a framework for discriminant analysis based on parsimonious normal

mixture models. This approach to discriminant analysis has been shown to be effective

in practice and being based on a statistical model it allows for uncertainty to be treated

appropriately.

In many applications, only a subset of the variables in a discriminant analysis

contain any group membership information and including variables which have no

group information increases the complexity of the analysis, potentially degrading the

classification performance. Therefore, there is a need for including variable selection

as part of any discriminant analysis procedure.

Variable selection can be completed as a preprocessing step prior to discriminant

analysis (a filter approach) or as part of the analysis procedure (a wrapper approach).

Completing variable selection prior to the discriminant analysis can lead to variables

that have poor individual classification performance being omitted from the subsequent

analysis. However, such variables could be important for classification purposes when

jointly considered with others. Hence, performing variable selection as part of the

discriminant analysis procedure is preferred.

Combining variable selection and linear or quadratic discriminant analysis has been

considered previously in the literature; see McLachlan (1992, Chapter 12) for a review.

Many of these methods are based on measuring the Mahalanobis distance between

groups before and after the inclusion of a variable into the discriminant analysis model.

In the machine learning literature, Kohavi and John (1997) developed a wrapper ap-

proach for combining variable selection in supervised learning, of which discriminant

analysis is a special case.

Variable selection is of particular importance in situations where there are more

variables than observations available; that is, large p, small n (n ≪ p) problems (West

2003). These situations arise with increasing frequency in statistical applications, in-

cluding genetics, proteomics, image processing and food science. The two food science

applications considered in Section 2 involve data sets with more variables than obser-

vations.

In this paper, a version of model-based discriminant analysis is developed by adapt-
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ing the model-based clustering with variable selection method of Raftery and Dean

(2006). This method of discriminant analysis builds a discriminant rule in a step-

wise manner by considering the inclusion of extra variables into the model and also

considering removing existing variables from the model based on their importance for

classification. The procedure is iterated until convergence.

A brief review of model-based clustering and discriminant analysis is given in Sec-

tion 3. The underlying model for model-based clustering with variable selection is

reviewed in Section 3.1 and this model is extended to model-based discriminant analy-

sis with variable selection in Section 3.2. In Section 3.3, the fitting of the discriminant

analysis model is extended to incorporate semi-supervised updating using both the

labeled and unlabeled observations (Dean et al. 2006) in order to improve the classifi-

cation performance.

Search strategies for selecting the variables for inclusion and exclusion are discussed

in Section 3.4. A headlong search strategy is proposed that combines good classification

performance and computational efficiency. The proposed methodology is applied to the

high dimensional datasets in Section 4 and the methodology and results are discussed

in Section 5.

2 Data

2.1 Food Authenticity Studies

An authentic food is one that is what it claims to be. Important aspects of food de-

scription include its process history, geographic origin, species/variety and purity. Food

producers, regulators, retailers and consumers need to be assured of the authenticity

of food products.

Food authenticity studies are concerned with establishing whether foods are au-

thentic or not. Many analytical chemistry techniques are used in food authenticity

studies, including gas chromatography, mass spectroscopy, and vibrational spectro-

scopic techniques (Raman, ultraviolet, mid-infrared, near-infrared and visible). All of

these techniques have been shown to be capable of discriminating between certain sets

of similar biological materials. Downey (1996) provides a review of food authenticity

studies with an emphasis on the use of near-infrared spectroscopy in these studies.

We consider two food authenticity data sets which consist of near-infrared spec-

troscopic measurements from food samples of different types. The aim of the food

authenticity study is to classify the food samples into known groups.

Near-infrared spectroscopy (NIR) is used as a quick and efficient method of collect-
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Figure 1: The near-infrared spectra recorded for all of the 231 meat samples in the study.
The discontinuity at 1100 nm is due to a sensor change at that value. The samples are
colored as Beef=red, Lamb=green, Pork=blue, Turkey=orange, Chicken=yellow.

ing data for use in food authenticity studies (Downey 1996). Two particular authen-

ticity studies are considered in Sections 2.2 and 2.3:

• Classifying meats into species (Beef, Chicken, Lamb, Pork, Turkey)

• Classifying olive oils into geographic origin (Crete, Peloponese, Other).

Combined visible and near infrared spectra were collected in reflectance mode using

an NIRSystems 6500 instrument over the wavelength range 400–2498 nm at 2 nm

intervals. The visible portion of the spectrum is the range 400–800 nm and the near-

infrared region is the range 800–2498 nm.

For the meat samples, twenty five separate scans were collected during a single

passage of the spectrophotometer and averaged, after which the mean spectrum of a

reference ceramic tile (16 scans) was recorded and subtracted from the mean spectrum.

A similar process was used for the olive oil data, but fewer scans were used.

2.2 Homogenized Meat Data

A total of 231 homogenized meat samples were collected for this study (55 Chicken,

55 Turkey, 55 Pork, 32 Beef and 34 Lamb). Details of the data collection process are

given in McElhinney et al. (1999).

Each spectrum consists of reflectance readings at different wavelengths and consists

of 1050 reflectance measurements. The spectra of all the samples are shown in Figure 1.
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Figure 2: Regions of Greece where the olive oil samples were collected.

2.3 Greek Olive Oils Data

A total of 65 olive oil samples were collected from three different regions in Greece (18

Crete, 28 Peloponese, 19 Other). Each data value consists of 1050 reflectance values

over the visible and near-infrared range. Here we want to use the spectra to determine

the geographical origin (see Figure 2) of the oils. Details of these data and a previous

analysis are given in Downey et al. (2003).

3 Model-based Clustering and Discriminant Anal-

ysis

Model-based clustering (Banfield and Raftery 1993; Fraley and Raftery 1998, 2002;

McLachlan and Peel 2000) uses mixture models as a framework for cluster analysis.

The underlying model in model-based clustering is a normal mixture model with G

components, that is,

f(x) =
G∑

g=1

τgf(x|µg,Σg),

where f(·|µg,Σg) is a multivariate normal density with mean µg and covariance Σg.

A central idea in model-based clustering is the use of constraints on the group

covariance matrices Σg; these constraints use the eigenvalue decomposition of the co-

variance matrices to impose shape restrictions on the groups. The decomposition is of

the form, Σg = λgDgAgD
T
g , where λg is the largest eigenvalue, Dg is an orthonormal

matrix of eigenvectors, and Ag is a diagonal matrix of scaled eigenvalues. Interpre-

tations for the parameters in the covariance decomposition are: λg= Volume; Ag=

Shape; Dg= Orientation. These parameters can be constrained in various ways to be
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Table 1: Constrained covariance structures in model-based clustering as implemented in the
mclust package for R.

ModelID Volume Shape Orientation Covariance (Σg)
EII Equal Equal Spherical NA λI

VII Variable Equal Spherical NA λgI

EEI Equal Equal Axis Aligned λA

VEI Variable Equal Axis Aligned λgA

EVI Equal Variable Axis Aligned λAg

VVI Variable Variable Axis Aligned λgAg

EEE Equal Equal Equal λDADT

EEV Equal Equal Variable λDgADT
g

VEV Variable Equal Variable λgDgADT
g

VVV Variable Variable Variable λgDgAgD
T
g

equal or variable across groups. Additionally, the shape and orientation matrices can

be set equal to the identity matrix.

Bensmail and Celeux (1996) developed model-based discriminant analysis methods

using the same covariance decomposition. An extension of model-based discriminant

analysis that allows for updating of the classification rule using the unlabeled data was

developed by Dean et al. (2006) and will be described in further detail in Section 3.3.

Model-based clustering and discriminant analysis can be implemented in the statistics

package R (R Development Core Team 2007) using the mclust package (Fraley and

Raftery 1999, 2003, 2007).

3.1 Model-based Clustering with Variable selection

We argue that variable selection needs to be part of the discriminant analysis procedure,

because completing variable selection prior to discriminant analysis may lose important

grouping information. This argument is supported by the result of Chang (1983),

who showed that the principal components corresponding to the larger eigenvalues

do not necessarily contain information about group structure. This suggests that the

commonly used filter approach of selecting the first few principal components to explain

a minimum percentage of variation can be suboptimal. A similar argument can be

made that selecting discriminating variables without reference to the grouping variable

may miss important variables. In addition, some variables may contain strong group

information when used in combination with other variables, but not on their own.

Another critique of completing a variable (or feature) selection step before supervised
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learning was given by Kohavi and John (1997, Section 2.4).

Raftery and Dean (2006) developed a version of model-based clustering that in-

cludes variable selection. With their method, variables are selected in a stepwise man-

ner. Their method involves the stages:

• Find the variable with the greatest evidence of clustering given the already se-

lected variables and add it to the set of chosen variables.

• Find the variable with the least evidence of clustering from the set of selected

variables and remove it from the set of selected variables if it no longer has

evidence of clustering.

This process is iterated until no further variables are added or removed. This approach,

that combines variable selection and cluster analysis, avoids the problems of completing

variable selection independently of the clustering.

3.2 Model-based Discriminant Analysis With Variable Se-
lection

We adapt the ideas of Raftery and Dean (2006) to produce a discriminant analysis

technique that includes variable selection. This discriminant analysis method uses

a stepwise variable selection procedure to find a subset of variables that gives good

classification results.

Each stage of the algorithm involves two steps:

• Determine if a variable (not already selected) would contribute to the discriminant

analysis model. If the variable improves the model, it is added to the model; the

procedure for searching for variables to add to the model is given in Section 3.4

• Determine if any selected variables should be removed from the discriminant

analysis model. If a selected variable does not contribute to the model, then it is

removed; the procedure for searching the variables to remove from the model is

given in Section 3.4.

Let (x1,x2, . . . ,xn) be the observed data values and let (l1, l2, . . . , ln) be the group

indicator variables for these observations where lig = 1 if observation i belongs to group

g and lig = 0 otherwise.

Suppose that the observation xi is partitioned into three parts: x
(c)
i are the variables

already chosen; x
(p)
i is the variable being proposed; x

(o)
i are the remaining variables.

The decision on whether to include or exclude a proposed variable is based ade on the

comparison of two models:
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Figure 3: A graphical model representation of the Grouping and the No Grouping models.

• Grouping: p(xi|li) = p(x
(c)
i ,x

(p)
i ,x

(o)
i |li) = p(x

(o)
i |x

(p)
i ,x

(c)
i )p(x

(p)
i ,x

(c)
i |li).

• No Grouping: p(xi|li) = p(x
(c)
i ,x

(p)
i ,x

(o)
i |li) = p(x

(o)
i |x

(p)
i ,x

(c)
i )p(x

(p)
i |x

(c)
i )p(x

(c)
i |li).

Figure 3 shows the difference between the “Grouping” and “No Grouping” models

for xi. If the Grouping model holds, x
(p)
i provides information about which group the

data value belongs to beyond that provided by x
(c)
i , while if the No Grouping model

holds, x
(p)
i provides no extra information.

The Grouping and No Grouping models are specified as follows:

• Grouping: We let p(x
(p)
i ,x

(c)
i |li) be a normal density with parsimonious covariance

structure as described in Table 1. That is,

(x
(p)
i ,x

(c)
i )|(lig = 1) ∼ N(µ(p,c)

g ,Σ(p,c)
g ),

li ∼ Multinomial(1, τ).

• No Grouping: We let p(x
(c)
i |li) be a normal density with parsimonious covariance

structure. In addition, p(x
(p)
i |x

(c)
i ) is assumed to have a linear regression model

structure. That is,

x
(c)
i |(lig = 1) ∼ N(µ(c)

g ,Σ(c)
g ),

li ∼ Multinomial(1, τ),

x
(p)
i |x

(c)
i ∼ N(α + βTx

(c)
i , σ2).

The same model structure is assumed for p(x
(o)
i |x

(c)
i ,x

(p)
i ) in the Grouping model

as in the No Grouping model. Therefore, this part of the model does not influence the

choice to include x
(p)
i in the model or not.
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The decision as to whether the Grouping or No Grouping model is appropriate is

made using the BIC approximation of the log Bayes factor. The logarithm of the Bayes

factor is

log (Bayes Factor) = log
p(xi|MG)

p(xi|MNG)
, (1)

where MG is the Grouping model, MNG is the No Grouping model and

p(xi|Mk) =

∫
p(xi|θk,Mk)p(θk|Mk)dθk

is the integrated likelihood of model Mk. We use the BIC approximation of the

integrated likelihood in the form

BIC = log maximized likelihood −
d

2
log(n),

where d is the number of parameters in the model and n is the sample size (Schwarz

1978). Following Raftery and Dean (2006), the log Bayes factor (1) can be reduced to

log (Bayes Factor) = log
p(x

(p)
i |x

(c)
i ,MG)p(x

(c)
i |MG)

p(x
(p)
i ,x

(c)
i |MNG)

≈ BIC(Grouping)-BIC(No Grouping), (2)

which only involves (x
(c)
i ,x

(p)
i ) and not x

(o)
i . Variables with a positive difference in

BIC(Grouping)-BIC(No Grouping) are candidates for being added to the model.

At each stage, we also check if an already chosen variable should be removed from

the model. This decision is made on the basis of the BIC difference in a similar way

to previously. In this case, x
(p)
i takes the role of the variable to be dropped, x

(c)
i

takes the role of the remaining chosen variables and x
(o)
i are the other variables. The

variables with a positive difference in BIC(No Grouping)-BIC(Grouping) are candidates

for removal from the model.

3.3 Discriminant Analysis with Updating

In standard discriminant analysis, the unlabeled data is not used in the model fitting

procedure. However, these data contain information that is potentially important,

especially when very few labeled data values are available. We can model both the

labeled and unlabeled data as coming from the same model, but where the unlabeled

data is missing the labeling variable; this leads to a mixture model for the unlabeled

data. Hence, the unlabeled data can then be used to help fit a model to the data. This

idea has been investigated by many authors including Ganesalingam and McLachlan

(1978) and O’Neill (1978) and more recently by Dean et al. (2006), Chapelle et al.

(2006), Toher et al. (2007) and Liang et al. (2007).
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Let (x1, l1), (x2, l2), . . . , (xN , lN ) be the labeled data and y1,y2, . . . ,yM be the un-

labeled data. We let z = (z1, z2, . . . , zM ) be the unobserved (missing) labels for the

unlabeled data. In this framework, the Grouping and No Grouping models for the

observed data are of the form:

• Grouping: We let p(x
(p)
i ,x

(c)
i |li) be a normal density with parsimonious covariance

structure as described in Table 1, namely

(x
(p)
i ,x

(c)
i )|(lig = 1) ∼ N(µ(p,c)

g ,Σ(p,c)
g ),

li ∼ Multinomial(1, τ).

Also, p(y
(p)
j ,y

(c)
j ) is a mixture of normals with parsimonious covariance structures,

namely

(y
(p)
j ,y

(c)
j ) ∼

G∑
g=1

τgN(µ(p,c)
g ,Σ(p,c)

g )

• No Grouping: We let p(x
(c)
i |li) be a normal density with parsimonious covariance

structure, namely

x
(c)
i |(lig = 1) ∼ N(µ(c)

g ,Σ(c)
g ),

li ∼ Multinomial(1, τ).

We also let p(y
(c)
j ) be a mixture of normal densities with parsimonious covariance

structure, namely

y
(c)
j ∼

G∑
g=1

τgN(µ(c)
g ,Σ(c)

g ).

In addition, we assume a linear regression model for p(x
(p)
i |x

(c)
i ) and p(y

(p)
j |y

(c)
j ),

namely

x
(p)
i |x

(c)
i ∼ N(α + βTx

(c)
i , σ2) and y

(p)
j |y

(c)
j ∼ N(α + βTy

(c)
j , σ2).

In both models, we assume an identical model structure for p(x
(o)
i |x

(c)
i ,x

(p)
i ) and

p(y
(o)
j |y

(c)
j ,y

(p)
j ), and this doesn’t affect the choice to include a variable in the model

or not.

This model can be fitted using the EM algorithm (Dempster et al. 1977) by in-

troducing the missing labels z into the model. The calculations involved in fitting

the model including the labeled and unlabeled data follows those outlined in Dean

et al. (2006). The maximum likelihood estimates for the regression part of the model

correspond to least squares estimates of the regression parameters.
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Figure 4: A plot of the BIC difference for each wavelength. The wavelength with the greatest
difference is 626 nm.

The final estimates of the posterior probability of group memberships produced by

the EM algorithm are used to classify the unlabeled observations. Thus each observa-

tion is classified into the group that maximizes ẑjg, where

ẑjg =
τ̂gp(y

(c)
j |µ̂

(c)
g , Σ̂

(c)
g )∑G

g′=1 τ̂g′p(y
(c)
j |µ̂

(c)
g′ , Σ̂

(c)
g′ )

,

y
(c)
j is the set of chosen variables, and {(τ̂g, µ̂

(c)
g , Σ̂

(c)
g ) : g = 1, 2, . . . , G} are the max-

imum likelihood estimates for the unknown model parameters for this set of chosen

variables.

3.3.1 Example

An illustrative example of the BIC calculations when the proposed algorithm is applied

to the meat spectroscopy data is shown in Figures 4–6; half the data of each type were

randomly selected as training data in this example.

The variable selection algorithm begins by selecting 626 nm as the wavelength with

the greatest difference between the Grouping and No Grouping models (Figure 4).

Subsequently, the 814 nm wavelength is added to the model (Figure 5). It is worth

noting that wavelengths close to 626 nm still have strong evidence of grouping even

though the spectra are smoothly varying. At the third stage, the 774 nm wavelength

is selected (Figure 6). The procedure continues until thirteen wavelengths are selected

(details of the iterations are given in Table 2). Interestingly, many of the chosen

wavelengths are in the visible range (400–800 nm) of the spectrum indicating that

color is important when separating the meat samples.
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Figure 5: A plot of the BIC difference for each wavelength given that wavelength 626 nm
is already accepted. The wavelength with the greatest BIC difference is 814 nm. Note that
wavelengths close to 626 nm still have positive BIC difference values.
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Figure 6: A plot of the BIC difference for each wavelength given that the wavelengths
(626 nm and 814 nm) are already accepted. The wavelength with the greatest BIC difference
is 774 nm.
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Table 2: A full example of the variable selection procedure being used to classify the meat
samples into five types. The updating procedure was used in this example.
Iteration Proposal BIC Diff. Decision Proposal BIC Diff. Decision

1 Add 626 nm 425.4 Accepted
2 Add 814 nm 274.1 Accepted
3 Add 774 nm 427.4 Accepted Remove 774 nm -427.4 Rejected
4 Add 664 nm 142.6 Accepted Remove 626 nm -120.1 Rejected
5 Add 680 nm 220.1 Accepted Remove 774 nm -78.8 Rejected
6 Add 864 nm 165.2 Accepted Remove 774 nm -91.7 Rejected
7 Add 602 nm 118.9 Accepted Remove 774 nm -26.3 Rejected
8 Add 794 nm 118.3 Accepted Remove 774 nm -86.2 Rejected
9 Add 702 nm 178.6 Accepted Remove 774 nm -127.5 Rejected

10 Add 1996 nm 127.5 Accepted Remove 1996 nm -127.5 Rejected
11 Add 644 nm 76.6 Accepted Remove 644 nm -76.6 Rejected
12 Add 2316 nm 24.1 Accepted Remove 2316 nm -24.1 Rejected
13 Add 2310 nm 103.2 Accepted Remove 702 nm -26.1 Rejected
14 Add 1936 nm 10.8 Accepted Remove 702 nm 4.4 Accepted
15 Add 704 nm -3.7 Rejected Remove 1936 nm -41.3 Rejected

3.4 Headlong Model Search Strategy

The variable selection algorithm demonstrated in Section 3.3.1 is a greedy search strat-

egy. At the variable addition stages of the algorithm, the variable with the greatest

BIC difference is added and at variable removal stages the variable with the greatest

BIC difference is removed. The process of finding the variable with the greatest BIC

difference involves calculating the BIC difference for all variables under consideration;

for the spectroscopic data there are typically about 1000 variables under considera-

tion at the variable addition stages. Hence, this search strategy is computationally

demanding.

A less computationally expensive alternative is to use a headlong search strategy

(Badsberg 1992). The variable added or removed in the headlong search strategy

need not be the best in terms of having the greatest BIC difference; it merely needs

to be the first variable considered whose difference is greater than some pre-specified

value (here min.evidence); we found that min.evidence = 0 gave good results for the

applications in this paper. This means that instead of adding the variable with the

greatest evidence for Grouping versus No Grouping, the first variable found to have

a certain amount of evidence for Grouping versus No Grouping would be added. At

the variable addition stages of the algorithm, the remaining variables are examined

13



in turn from an ordered list. The initial order of the list is based on the variables’

original BIC differences at the univariate addition stage; this ordering was used in a

similar context in Yeung et al. (2005). We experimented with the initial ordering and

also tried using increasing wavelength and decreasing wavelength. The classification

performance was not sensitive to the initial ordering but the selected variables did

depend on the ordering. In the context of increasing and decreasing wavelength there

was a bias towards selecting low and high wavelengths, respectively.

Here is a summary of the algorithm.

1. Select the first variable that is added to be the one that has the most evidence

for Grouping versus No Grouping in terms of greatest BIC difference (the same

as the first step of the greedy search algorithm). Create a list of the remaining

variables in decreasing order of BIC differences.

2. Select the second variable that is added to be the first variable in the list of re-

maining variables with BIC difference for Grouping versus No Grouping, including

the first variable selected, greater than min.evidence. Any variable checked and

not used at this stage is placed at the end of the list of remaining variables.

3. Select the next variable that is added to be the first variable in the list of remaining

variables with BIC difference for Grouping versus No Grouping, including the

previous variables selected, greater than min.evidence. If no variable has BIC

difference greater than min.evidence then no variable is added at this stage. Any

variable checked and not used at this stage is placed, in turn, at the end of the

list of remaining variables.

4. Check in turn each variable currently selected (in reverse order of inclusion) for

evidence of No Grouping (versus Grouping), including the other selected variables,

and remove the first variable with BIC difference greater than min.evidence. If

no variable has BIC difference greater than min.evidence then no variable is

removed at this stage. The removed variable is placed at the end of the list of

other remaining variables.

5. Iterate steps 3 and 4 until two consecutive steps have been rejected, then stop.

4 Results

The proposed methodology was applied to the two food authenticity data sets de-

scribed in Section 2.1. In each case, the data were split so that 50% of the data

were used as labeled data and 50% as unlabeled. The methodology was applied to
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Table 3: Classification performance on the Meats data for the variable selection algorithm
with updating and for previous analyses of these data. Mean classification performance for
the 50 random splits of the data are reported with standard deviations in parentheses.

Method Misclassification Rate
Variable Selection and Updating 6.1% (3.5)
Dean et al. (2006) 5.6% (2.0)
McElhinney et al. (1999) 7.3–13.9%
Random Forests 20.1% (3.8)
AdaBoost.M1 20.3% (4.8)
Bayesian Multinomial Regression 34.2% (5.8)

50 random splits of labeled and unlabeled data and the mean and standard deviation

of the classification rate were computed. The results were compared to previously

reported performance results for these data and several widely used alternative tech-

niques: Random Forests (Breiman 2001), AdaBoost (Freund and Schapire 1997) and

Bayesian Multinomial Regression (Madigan et al. 2005). We used the default settings

in the R (R Development Core Team 2007) implementations of Random Forests (Liaw

and Wiener 2002) and AdaBoost (Cortés et al. 2007) and for Bayesian Multinomial Re-

gression we used cross validation to choose between the choice of prior variance values

{10p : p = −4,−3,−2,−1, 0, 1, 2, 3, 4} as suggested in Genkin et al. (2005).

4.1 Meats Data

The results achieved on the homogenized meat data (Section 2.2) are reported in Ta-

ble 3. These results show that the Variable Selection and Updating method gives

comparable or better performance than previous analyses of these data; an improved

classification rate has been achieved relative to those achieved by McElhinney et al.

(1999) who used factorial discriminant analysis (FDA), k-nearest neighbors (kNN),

discriminant partial least squares regression (PLS) and soft independent modeling of

class analogy (SIMCA). Furthermore, a comparable classification performance has been

achieved relative to Dean et al. (2006) who used model-based discriminant analysis

with updating on a reduced form of the data derived from wavelet thresholding. The

variable selection and updating procedure gave substantially better performance than

other competing methods for classification.

An examination of the misclassification table (Table 4) for the Variable Selection

and Updating method shows that many of the misclassifications were due to the diffi-

culty in separating the chicken and turkey groups. Interestingly, no misclassifications
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Table 4: Average classification results for the different meat types for the Variable Selection
and Updating classification method.

Predicted

Truth Beef Lamb Pork Turkey Chicken
Beef 98.6 1.4 0.0 0.0 0.0
Lamb 1.4 98.6 0.0 0.0 0.0
Pork 0.0 0.0 99.2 0.5 0.3

Turkey 0.0 0.0 0.0 88.2 11.8
Chicken 0.0 0.0 0.0 11.1 88.9

were made between the red and white meats.

The chosen wavelengths show us which parts of the spectrum are of importance

when classifying samples into different species. We recorded the chosen wavelengths

for each of the 50 sets of results and these are shown in Figure 7. We can see that a

large proportion (51%) of the chosen wavelengths are in the visible region (400 nm–

800 nm) but some regions in the near-infrared spectrum are also chosen. Liu and

Chen (2000, Table 1) assign many of the spectral features in the visible part of the

spectrum to different forms of myoglobin such as deoxymyoglobin (430, 440, 445 nm),

oxymyoglobin (545, 560, 575, 585 nm), metmyoglobin (485, 495, 500, 505 nm) and

sulfmyoglobin (635 nm). Sulfmyoglobin is a product of the reaction of myoglobin

with H2S generated by bacteria, and Arnalds et al. (2004) found the region of the

spectrum close to 635 nm to be important when separating the red and white meat

samples. The peak at 1100 nm is the wavelength where the sensor changes in the near-

infrared spectrometer and the peak at 1068 nm can be attributed to third overtones

of C-H stretch mode and C-H combination bonds from meat constituents other than

oxymyoglobin (Liu et al. 2000). The near infrared region consisting of wavelengths near

1510 nm has been attributed to protein, and a cluster of chosen wavelengths is close to

this region. In all cases, between 13 and 19 wavelengths were chosen for classification

purposes.

Following McElhinney et al. (1999) and Dean et al. (2006), we combined the chicken

and turkey groups into a poultry group to determine how well we can classify the

homogenized meat samples into four types. The classification results are reported in

Table 5 and the misclassifications from the variable selection method with updating

are shown in Table 6. There is a significant improvement in classification performance

from all of the methods. Again, the white and red meats are separated with zero error.

The wavelengths chosen for the four group classification problem (Figure 8) still
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Figure 7: Wavelengths chosen in the five meat classification problem for the Variable Selec-
tion and Updating method. The height of the bars shows how many times the wavelength
was chosen in 50 random splits of the data.

Table 5: Classification performance on the Meats data for the variable selection algorithm
with updating and for previous analyses of these data after combining the chicken and turkey
into a poultry group. Mean classification performance for the 50 random splits of the data
are reported with standard deviations in parentheses.

Method Misclassification Rate
Variable Selection and Updating 0.8% (1.3)
Dean et al. (2006) 1.0% (0.9)
McElhinney et al. (1999) 2.6–4.3%
Random Forests 10.5% (3.3)
AdaBoost.M1 14.7% (3.7)
Bayesian Multinomial Regression 17.2% (4.9)
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Table 6: Average classification results for the different meat types after combining the chicken
and turkey into a poultry group. The results shown are for the Variable Selection and
Updating method.

Predicted

Truth Beef Lamb Pork Poultry
Beef 98.2 1.8 0.0 0.0
Lamb 2.7 97.3 0.0 0.0
Pork 0.0 0.0 99.1 0.9

Poultry 0.0 0.0 0.0 100.0
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Figure 8: Wavelengths chosen in the four meat classification problem for the Variable Selec-
tion and Updating method.

have a substantial proportion chosen from the visible part of the spectrum (52%). In

this application, between 13 and 21 wavelengths were chosen for classification purposes.

4.2 Greek Olive Oil Data

The methods were applied to the Greek olive oil data (Section 2.3) with 50% of the data

being treated as training data and 50% as test data. Fifty random splits of training and

test data were used. The misclassification rates achieved on these data are reported in

Table 7. Variable selection and updating provides one of the best classification rates for

these data. Downey et al. (2003) did report a better misclassification rate (6.1%) using

factorial discriminant analysis (FDA) but the choice of a subset of wavelengths, data
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Table 7: Classification performance on the Olive Oil data for the variable selection algorithm
with updating and for previous analyses of these data. Mean classification performance for
the 50 random splits of the data are reported with standard deviations in parentheses.

Method Misclassification Rate
Variable Selection and Updating 6.9% (5.4)
Dean et al. (2006) 11.9% (6.3)
Downey et al. (2003) 6.1–19.0%
Random Forests 19.3% (6.5)
AdaBoost.M1 34.1% (9.3)
Bayesian Multinomial Regression 57.0% (1.2)

Table 8: Average classification results for the olive oil groups. The results shown are for the
Variable Selection and Updating method.

Predicted

Truth Crete Peleponese Other
Crete 90.0 8.7 1.3

Peleponese 1.0 92.9 6.1
Other 0.0 3.8 96.2

pre-processing method and classification method (from partial least squares, factorial

discriminant analysis and k-nearest neighbors) was made with reference to the test

data classification performance. In contrast, our model selection was done without

reference to the test data classification performance.

A cross tabulation of the classifications with the true origin of the olive oils (Table 8)

reveals the difficulty in classifying the oils.

In contrast to the meat classification problem, the chosen wavelengths for this

problem (Figure 9) are concentrated in the near-infrared region (800–2498 nm) but

some wavelengths in the visible region are also selected. The most commonly chosen

wavelength is 2080 nm which has been attributed to an O-H stretching/O-H bend

combination (Osborne et al. 1984). Wavelengths near 2310, 2346 and 2386 nm are due

to C-H stretching vibrations and other vibrational modes. In particular, wavelengths in

the 2310 nm region have previously been assigned to fat content. In all cases, between

6 and 29 wavelengths were selected with a mean of 15 wavelengths being chosen.
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Figure 9: Wavelengths chosen in the olive oil classification problem using Variable Selection
and Updating method. The height of the bars shows how many times the wavelength was
chosen in 50 random splits of the data.

5 Discussion

The discriminant analysis method presented in this paper gave much better results than

those given by other popular machine learning techniques such as Random Forests

(Breiman 2001), AdaBoost (Freund and Schapire 1997) and Bayesian Multinomial

Regression (Genkin et al. 2005; Madigan et al. 2005) for the high-dimensional food

authenticity datasets analysed here. This improvement is further enhanced by the

addition of the updating procedure for including the unlabeled data in the estimation

method. It is clear from the results that the headlong search method for variable

selection offers an efficient method for selecting wavelengths.

In addition to the improvement in classification results in the example data sets

given, the number of variables needed for classification was substantially reduced. The

variable selection results in the food authenticity application suggest the possibility

of developing authenticity sensors that only use reflectance values over a carefully

selected subset of the near-infrared and visible spectral range. In contexts such as gene

expression data and document classification this could mean a substantial savings in

terms of time for data collection and space for future data storage.

We have compared our method with three established leading classification methods

from statistics and machine learning for which standard software implementations are

available. One of these, AdaBoost, was identified by Leo Breiman as “the best off-the-
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shelf classifier in the world” (Hastie et al. 2001).

A range of recent approaches to variable selection in a classification context in-

clude the DALASS approach of Trendafilov and Jolliffe (2007), variable selection for

kernel Fisher discriminant analysis (Louw and Steep 2006), the stepwise stopping rule

approach of Munita et al. (2006), a number of different search algorithms (proposed

as alternatives to backward/forward/stepwise search) wrapped around different dis-

criminant functions compared by Pacheco et al. (2006), and genetic search algorithms

wrapped around Fisher discriminant analysis by Chiang and Pell (2004). Another

example in the context of spectroscopic data is given by Indahl and Naes (2004).

In terms of other approaches, a good review of recent work on the problem of vari-

able or feature selection in classification was given by Guyon and Elisseeff (2003) from

a machine learning perspective. A good review of methods involving Support Vector

Machines (SVMs) (along with a proposed criterion for exhaustive variable selection)

is given by Mary-Huard et al. (2007). An extension allowing variable selection for the

multiclass problem using SVMs is given by Wang and Xiatong (2007) and an approach

for binary problems using SVMs within the framework of smoothing spline ANOVA

models is given by Zhang (2006). An alternative approach for combining pairwise clas-

sifiers is given by Szepannek and Weihs (2006) based on Hastie and Tishirani (1998).

For classifying streaming data a new approach has been proposed by Zhou et al. (2006).

Greenshtein (2006) looks at theoretical aspects of the n ≪ p classification and variable

selection problem in terms of empirical risk minimization subject to l1 constraints.

The Lasso was developed by Tibshirani (1996) and an alternative approach called the

elastic net is given by Zou and Hastie (2005). Finally an alternative to single subset

variable selection through Bayesian Model Averaging (Madigan and Raftery 1994) is

given by Dash and Cooper (2004).
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