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A fundamental goal of educational research is identifying students’ current stage of
skill mastery (complete/partial/none). In recent years a number of cognitive diagnosis
models have become a popular means of estimating student skill knowledge. How-
ever, these models become difficult to estimate as the number of students, items, and
skills grows. There exist alternatives such as sum-scores and the capability matrix.
While initial theoretical work on sum-scores has been done by, the behavior of sum-
scores and the capability matrix is not well understood with respect to each other or to
estimates from cognitive diagnosis models. In this paper we compare the performance
of the three estimates of student skill skill knowledge under a variety of clustering
methods.

1 Introduction
A fundamental goal of educational research is identifying students’ current stage of

skill mastery (complete/partial/none). In addition, finding groups of students with similar
skill set profiles is important to provide feedback for classroom instruction. In recent years
a number of cognitive diagnosis models [3,9] have become a popular means of estimating
student skill knowledge. However, these models become difficult and time-consuming to
estimate as the number of students, items, and skills increases [6]. There are a variety of
other procedures, such as sum-scores [3,7] and the capability matrix [1], that can be used
to estimate student skill knowledge in (near to) real time.

While initial theoretical work on sum-scores has been done by [3], the behavior of
sum-scores and the capability matrix is not well understood with respect to each other or
to estimates from cognitive diagnosis models. In this paper we take step back and compare
the performance of the three estimates of student skill skill knowledge under a variety of
clustering methods.

In Section 2, we describe the three different estimates of student skill knowledge we
focus on in this paper. In Section 3, we give a brief introduction to clustering methods.
In Section 4, we show results from a simulation study. Finally, in Section 5, we offer
conclusions and thoughts on future work.

2 Estimates of Student Skill Knowledge
When estimating student skill knowledge, there are many possible methods. This paper

will consider three different estimation procedures. First, we introduce notation that will
be common among the methods. We begin by assembling the skill dependencies of each
item into a Q-matrix [2,13]. The Q-matrix, also referred to as a transfer model or skill
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coding, is a J × K matrix where q jk = 1 if item j requires skill k and 0 if it does not, J is
the total number of items, and K is the total number of skills. The Q-matrix is usually an
expert-elicited assignment matrix. This paper assumes the Q-matrix is known and correct.

There are (at least) two ways in which Q-matrices can differ. First, each item could
require only a single skill or multiple skills. A Q-matrix can then be comprised of all single
skill items, single and multiple skill items, or all multiple skill items. Second, the Q-matrix
may have a balanced or unbalanced design. In a balanced design, all single skill items
occur the same number of times and each combination of skills occurs the same number of
times. For example, if K = 3 and J = 30 one possible balanced design would be five single
skill items for each skill, four double skill items for each pair of skills, and three triple
skill items. A design could be unbalanced in two ways. Either all skills or combinations of
skills are present but do not occur the same number of times or there are missing skills or
combinations of skills.
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We then assemble student responses in a N × J response matrix Y where yi j indicates
both if student i attempted item j and whether or not they answered item j correctly and
N is the total number of students. If student i did not answer item j then yi j = NA. The
indicator Iyi j,NA = 0 expresses this missing value. If student i attempted item j ( Iyi j,NA = 1),
then yi j = 1 if they answered correctly, or 0 if they answered incorrectly.

2.1 DINA Model Estimates

The first method of estimating student skill knowledge uses a common conjunctive
cognitive diagnosis model. The deterministic inputs, noisy “and” gate model (DINA; [9])
models student responses as

P(Yi j = 1 | ηi j, s j, g j) = (1 − s j)ηi jg1−ηi j
j (1)

where αik = I
{Student i has skill k} indicates if student i possesses skill k, ηi j =

∏K
k=1 α

q jk
ik

indicates if student i has all skills needed for item j, for item j, s j = P(Yi j = 0 | ηi j = 1)
is the slip parameter and g j = P(Yi j = 1 | ηi j = 0) is the guess parameter. If a student is
missing any of the required skills, the probability that they will answer an item correctly
drops due to the conjunctive assumption.

We estimate the student skill knowledge parameters of the DINA model, the αik, using
Markov Chain Monte Carlo methods with the program WinBUGS (Bayesian Inference
Using Gibbs Sampling, [10]). In the model, the αik are 0/1 indicating whether or not student
i has mastered skill k. Our estimates will be α̂ik ∈ [0, 1]. We can think of the α̂ik as the
probability that student i has mastered skill k.

2.2 Sum-scores
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The second method we consider is the sum-score method of [4,7]. Here the variable
Wi = (Wi1,Wi2, ...,WiK) is defined as a vector of sum-scores where the kth component is
defined as

Wik =

J
∑

j=1
Yi jq jk. (2)

Thus, the components of Wi are simply the number of items student i answered correctly
for each skill k. When an item requires more than one skill it will contribute to more than
one component of Wi.

2.3 Capability Matrix

Finally, we consider the capability matrix we defined in [1]. The capability matrix B is
an N × K matrix where where Bik is the proportion of correctly answered items involving
skill k that student i attempted. Thus,

Bik =

∑J
j=1 Iyi j,NA · yi j · q jk
∑J

j=1 Iyi j,NA · q jk
(3)

where yi j and q jk are the corresponding entries from the response matrix Y and Q-matrix.
The capability matrix expands on the sum-score method by accounting for the number of
items requiring skill k that student i answered. In this manner the statistic scales for the
number of items in which the skill appears as well as for missing data. If a student has
not seen all of the items requiring a particular skill, we still derive an estimate based on
the available information. If student i completes no items involving skill k, then Bik = NA.
In this case, we impute an uninformative value (e.g., 0.5, mean, median) to map students
to the hypercube. Exploring the performance of these imputation choices is ongoing. For
this paper we assume that the data are complete or that missing B-values are appropriately
imputed.

We can note that both the DINA model estimates and the B-matrix values map students
into a K-dimensional hypercube (for each dimension, zero indicates total lack of skill mas-
tery, one is complete skill mastery, and values in between are less certain). The 2K corners
of the hypercube correspond to natural skill set profiles Ci = {Ci1,Ci2, ...,CiK},Cik ∈ {0, 1}.

Additionally, we can note theoretical connections between the sum-scores and B-matrix
values. When all students have answered all questions and there is a balanced Q-matrix
design, the two estimates will lie in the same feature space. In this case, we expect the two
estimates to perform similarly. However, when there is either missing data or an unbalanced
Q-matrix design, the space in which the estimates lie will be different. In this case, we can
not guarantee that performance will be similar.

3 Clustering Methods

3



To identify groups of students with similar skill set profiles, we cluster the student
skill knowledge estimates. In this paper we will compare the performance of three com-
mon clustering methods: hierarchical agglomerative clustering, K-means, and model-based
clustering. In the sections below we will briefly introduce each of these methods.

3.1 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HAC; [11]) links groups in order of closeness to
form a tree structure from which a clustering solution can be extracted. Euclidean distance
is most commonly used to measure the distance between groups. The method also requires
the user to specify how to measure the distance between groups. We will use “complete”
linkage where the distance between any two groups is defined as the largest distance be-
tween observations in the two groups. In HAC, all points begin as their own observation.
The two closest groups are merged and all inter-group distances are recalculated. We con-
tinue merging groups and recalculating distances until a single group with all observations
is formed. One the tree structure is formed, we can extract the desired number of clusters
G by cutting the tree at a height corresponding to G branches.

3.2 K-means

k-Means [5] is a popular iterative descent algorithm for data X = {x1 , x2..., xn}, xi ∈ <
K .

It uses squared Euclidean distance as a dissimilarity measure and tries to minimize within-
cluster distance and maximize between-cluster distance. For a given number of clusters G,
k-Means searches for cluster centers mg and assignments A that minimize the criterion

min
A

G
∑

g=1

∑

A(i)=g
‖xi − mg‖

2.

The algorithm alternates between optimizing the cluster centers for the current assign-
ment (by the current cluster means) and optimizing the cluster assignment for a given set
of cluster centers (by assigning to the closest current center) until convergence (i.e. clus-
ter assignments do not change). It tends to find compact, spherical clusters and requires a
priori both the number of clusters G and a starting set of cluster centers. The final clus-
ter assignment can be sensitive to the choice of centers; a common method for initializing
k-Means is to randomly choose G observations.

3.3 Model-based Clustering

Model-based clustering [4, 12] is a parametric statistical approach that assumes: the
data X = {x1, x2, ..., xn}, xi ∈ <

K are an independently and identically distributed sample
from an unknown population density p(x); each population group g is represented by a
(often Gaussian) density pg(x); and p(x) is a weighted mixture of these density components,
i.e. p(x) = ∑G

g=1 πg · pg(x; θg) where ∑ πg = 1, 0 < πg ≤ 1 for g = 1, 2, ...,G, and
θg = (µg,Σg) for Gaussian components. The method chooses the number of components
G by maximizing the Bayesian Information Criterion (BIC) and estimates the means and
variances (µg,Σg) via maximum likelihood. While it may assume Gaussian components, its
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Table 1: Clustering Results Based on DINA Model Estimates of Student Skill Knowledge
N J K Q-matrix design DINA HAC K-means MBC MBC 2K

250 30 3 Both, bal 0.9793 0.9781 0.8367 0.8915 0.9632
(0.0179) (0.0200) (0.1192) (0.0882) (0.1087)

250 30 3 Both,unbal, all 0.9657 0.9657 0.7789 0.9129 0.9350
(0.0285) (0.2920) (0.0941) (0.0505) (0.0758)

250 30 3 Both,unbal,miss 0.9240 0.9131 0.7696 0.8811 0.9132
(0.0395) (0.0427) (0.0858) (0.0696) (0.0428)

250 30 3 Mult, bal 0.4677 0.5127 0.5012 0.5282 0.4979
(0.0292) (0.0443) (0.0578) (0.0690) (0.0411)

250 30 3 Mult, unbal, all 0.4629 0.4874 0.4948 0.5130 0.4790
(0.0430) (0.0536) (0.0816) (0.0736) (0.0495)

250 30 3 Mult, unbal, miss 0.3239 0.4070 0.3835 0.4266 0.4090
(0.0380) (0.0596) (0.0521) (0.0837) (0.0630)

500 68 5 Both, bal 0.9463 0.9428 0.7132 0.8348 0.9243
(0.0184) (0.0188) (0.0428) (0.1123) (0.0488)

500 68 5 Both, unbal, miss 0.8724 0.8729 0.6665 0.8213 0.8624
(0.0247) (0.0219) (0.0466) (0.0960) (0.0226)

300 40 7 Single 0.9041 0.8891 0.7674 0.3050 0.8881
(0.0262) (0.0286) (0.0409) (0.1203) (0.0282)

flexibility on their shape, volume, and orientation allows student groups of varying shapes
and sizes. When multiple students may map to the same location model-based clustering is
known to overfit the data by using spikes with near singular covariance in these locations.
To alleviate this concern, we jitter the student skill estimates by a small amount (0.01). The
effect on our results is minimal.

4 Simulation Study
To compare the skill knowledge estimates and clustering methods described above we

did a simulation study, generating data from the DINA model, described in Equation 1. We
first fix skill difficulties to be of equal medium difficulty and set inter-skill correlation to
be zero and generate true skill set profiles Ci for each student. These parameter choices
evenly spread students among the 2K natural skill set profiles. Next we draw slip and guess
parameters from a random uniform distribution (s j ∼ Unif(0,0.30); g j ∼ Unif(0,0.15)).
Given profiles and slip/guess parameters, we generate the student response matrix Y . We
repeat the data generation using a variety of different Q-matrices. For each Q-matrix we
ran 20 simulations so that we could derive an estimate of the standard deviation.

For these examples we know the true underlying skill set profiles Ci and can calculate
their agreement with the clustering partitions using the Adjusted Rand Index (ARI; [8]), a
common measure of agreement between two partitions. The expected value of the ARI is
zero and the maximum value is one, with larger values indicating better agreement.

Tables 1, 2, and 3 show the clustering results for the DINA model estimates, sum-scores,
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Table 2: Clustering Results Based on Sum-scores Estimates of Student Skill Knowledge
N J K Q-matrix design HAC K-means MBC MBC 2K

250 30 3 Both, bal 0.7644 0.8156 0.9321 0.9442
(0.1095) (0.1110) (0.1181) (0.0515)

250 30 3 Both,unbal, all 0.6398 0.7707 0.6970 0.8494
(0.0889) (0.0951) (0.2138) (0.0713)

250 30 3 Both,unbal,miss 0.6482 0.6728 0.7066 0.7661
(0.0511) (0.0650) (0.2064) (0.1095)

250 30 3 Mult, bal 0.3950 0.4720 0.4383 0.4375
(0.0339) (0.0648) (0.0675) (0.0517)

250 30 3 Mult, unbal, all 0.3862 0.4606 0.4380 0.4481
(0.0533) (0.0670) (0.0696) (0.0428)

250 30 3 Mult, unbal, miss 0.2689 0.2827 0.3314 0.3099
(0.0273) (0.0848) (0.0352) (0.0347)

500 68 5 Both, bal 0.4006 0.5859 0.5893 0.6523
(0.0560) (0.0442) (0.1223) (0.0432)

500 68 5 Both, unbal, miss 0.4104 0.54412 0.6010 0.6265
(0.0373) (0.0366) (0.0537) (0.0397)

300 40 7 Single 0.7348 0.6474 (0.0973) 0.7080
(0.0526) (0.0456) (0.0362) (0.0453)

and the capability matrix, respectively. In each table, N is the number of students, J is the
number of items, and K is the number of skills. In the DINA column of Table 1, we rounded
the α̂ik to 0/1, found the closest skill set profile, and compared it to the true generating skill
set profile. In the remaining columns we clustered the unrounded α̂ik. In Tables 2 and 3
we cluster the sum-score vectors and capability matrix. The final two columns in each of
the tables gives the results for model-based clustering when we search over an appropriate
range and when we request 2K clusters.

When looking at the tables we can note that the performance of all three clustering
methods is better (as indicated by a higher ARI) when there are both single and multiple
skill items in the Q-matrix. In addition, when the Q-matrix has a balanced design, as
opposed to an unbalanced design, the recovery of the true skill set profiles is better. Finally,
we can note that the performance of the three estimates of the student skill set profiles is
similar across the clustering methods. It is interesting to note that they perform as well as
the DINA model estimates.

5 Conclusions
Simulated examples show that for Q-matrices with single and multiple skill items, the

recovery of the true skill set profiles was better for all three clustering methods and all three
methods of estimating student skill knowledge. In addition, we note that the alternative
methods of estimating student skill knowledge behave similarly. It is interesting to note
that they perform as well as the DINA model estimates.
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Table 3: Clustering Results Based on Capability Matrix Estimates of Student Skill Knowl-
edge

N J K Q-matrix design HAC K-means MBC MBC 2K

250 30 3 Both, bal 0.7644 0.7947 0.9353 0.9411
(0.1095) (0.1056) (0.1583) (0.0300)

250 30 3 Both,unbal, all 0.7273 0.8082 0.6252 0.8281
(0.0867) (0.1227) (0.1719) (0.1543)

250 30 3 Both,unbal,miss 0.6698 0.7390 0.4563 0.6693
(0.0813) (0.0778) (0.1267) (0.1628)

250 30 3 Mult, bal 0.4045 0.4530 0.4586 0.4499
(0.0347) (0.0508) (0.0624) (0.0382)

250 30 3 Mult, unbal, all 0.3899 0.4585 0.4518 0.4580
(0.0509) (0.0550) (0.0822) (0.0589)

250 30 3 Mult, unbal, miss 0.2700 0.3638 0.2803 0.2840
(0.0291) (0.0737) (0.0620) (0.0457)

500 68 5 Both, bal 0.4096 0.5711 0.5951 0.6647
(0.0504) (0.0543) (0.1284) (0.0928)

500 68 5 Both, unbal, miss 0.4327 0.5435 0.5560 0.6291
(0.0405) (0.0350) (0.2027) (0.1050)

300 40 7 Single 0.7399 0.6437 0.0906 0.7109
(0.0545) (0.0402) (0.0168) (0.0409)

While there are benefits of using the capability matrix, we can note that if an item
requires multiple skills and a student answers incorrectly, all skills required by the item
will receive a penalty, even if the student has mastered one (or more) of the skills. In future
work we will explore the behavior of alternative capability matrices that better account
for multiple skill items. Possible methods could use performance on single skill items or
simply weight by the number of skills required by the incorrectly answered item.
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