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Abstract. In educational research, a fundamental goal is identifying which skills stu-
dents have mastered, which skills they have not, and which skills they are in the
process of mastering. As the number of examinees, items, and skills increases, the
estimation of even simple cognitive diagnosis models becomes difficult. To address
this, we introduce a capability matrix showing for each skill the proportion correct on
all items tried by each student involving that skill. We apply variations of common
clustering methods to this matrix and discuss conditioning on sparse subspaces. We
demonstrate the feasibility and scalability of our method on several simulated datasets
and illustrate the difficulties inherent in real data using a subset of online mathematics
tutor data. We also comment on the interpretability and application of the results for
teachers.

1 Introduction
In educational research, a fundamental goal is identifying which skills students have

mastered, which skills they have not, and which skills they are in the process of mastering.
A variety of cognitive diagnosis models [12] address this problem using information from
a student response matrix and an expert-elicited assignment matrix of the skills required
for each item. However, even simple models [10] become more difficult to estimate as the
number of skills, items, and examinees grows [1]. Any procedure used should be able to
handle the missing values that arise in assessment; students may not have time to finish all
items, for example, or they might intentionally skip items. Moreover, data is often missing
by design in assessment embedded in online tutoring systems.

In response, we introduce a capability matrix showing for each skill the proportion
correct on all items tried by each student involving that skill, expanding on the sum-score
work of [8]. We apply clustering methods to the capability matrix to identify groups of
students with similar skill set profiles, similar to [14] which clusters students based on
their collaborative behavior. In addition, we propose a conditional clustering heuristic that
takes advantage of obvious group separation in one or more dimensions. These methods
are faster than common cognitive diagnosis models, provide a unique visualization tool
of students’ skill mastery, and scale well to large datasets. We show that these methods
also add flexibility in the assignment of skill mastery; we are also able to determine the
students’ skills for which mastery is uncertain, a conservative classification scheme that
does not force a hard skill mastery assignment of yes or no. For illustrative purposes, we
demonstrate our method on three datasets simulated from the DINA model [10], a common
cognitive diagnosis model, and on a small subset of data obtained from the ongoing IES
Assistment Project [7]. Finally we conclude with comments on current and future work.
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2 The Capability Matrix
We begin by assembling the skill dependencies of each item into a Q-matrix [2,3,15].

The Q-matrix, also referred to as a transfer model or skill coding, is a J × K matrix where
q jk = 1 if item j requires skill k and 0 if it does not, J is the total number of items, and K
is the total number of skills. The Q-matrix is usually an expert-elicited assignment matrix.
This paper assumes the given Q-matrix is known and correct.
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Student responses are assembled in a N × J response matrix Y where yi j indicates both
if student i attempted item j and whether or not they answered item j correctly and N is the
total number of students. If student i did not answer item j then yi j = NA. The indicator
Iyi j,NA = 0 expresses this missing value. If student i attempted item j ( Iyi j,NA = 1 ), then
yi j = 1 if they answered correctly, or 0 if they answered incorrectly.

To cluster students by their skill set profiles, we need a summary statistic of their skill
performance. We define an N × K capability matrix B, where Bik is the proportion of
correctly answered items involving skill k that student i attempted. If student i did not
attempt any items with skill k, we assign a value of 0.5, an uninformative probability of
skill mastery. That is, if

∑J
j=1 IYi j,NA · q jk = 0, Bik = 0.5. Otherwise,

Bik =

∑J
j=1 IYi j,NA · Yi j · q jk
∑J

j=1 IYi j,NA · q jk
where i = 1, 2, ...N; k = 1, 2, ...,K (1)

where Yi j and q jk are the corresponding entries from the response matrix Y and Q-matrix.
There are several benefits of using a summary statistic of this form. The statistic scales

for the number of items in which the skill appears as well as for missing data. If a student
has not seen all or any of the items requiring a particular skill, we still derive an estimate
based on the available information. Also, the values naturally fall onto a skill mastery scale.
For each skill, zero indicates that a student has not mastered that skill, one indicates that
they have, and 0.5 indicates uncertainty, partial mastery, or no information.

Moreover, the vectors Bi = {Bi1, Bi2, ..., BiK} for i = 1, 2, ...,N, lie in a K-dimensional
unit hyper-cube where each skill corresponds to a dimension and each corner is one of
the 2K natural skill set profiles Ci = {Ci1,Ci2, ...,CiK}, Cik ∈ {0, 1}. In Figure 1, we show
the corresponding hyper-cubes for K = 2, 3 with selected profile locations labeled. For
example, if K = 3 and a student has the first two skills but not the third, their true skill set
profile would be {1, 1, 0}, the triangle in the bottom right back corner in Figure 1(b). The
Bi’s map each student into the unit hyper-cube. Ideally, students would be represented with
a point mass at each of the 2K corners. However in practice, students will not map directly
to the corners due to error, they may guess without having the skills or they may have the
skills and slip. In the capability matrix and the corresponding hyper-cube, values near or at
zero and one indicate certainty about skill mastery (no/yes). We are less certain about skill
mastery for values near 0.5. Note that multiple students may map to the same locations.
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Figure 1: Examples of 2D and 3D hyper-cubes with skill set profiles and a 2D B-matrix.

Suppose that we have the response matrix Y , the Q-matrix, and corresponding B-matrix
shown below. Figure 1(c) illustrates the corresponding mapping of the three students into
the two-dimensional hyper-cube. For student 1 at {0.8, 0.2}, we might say they likely have
skill 1 but likely do not have skill 2. For student 2 at {0.2, 0.33} we might say they likely
do not have skill 1 or skill 2, but we are less certain about their skill 2 status. Finally, for
student 3 at {0.83, 1}, we would say that they likely have skill 1 and definitely have skill 2.
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3 Clustering Methods
To identify groups of students with similar skill set profiles, we cluster the rows of the

B matrix (and subsequently partition the hyper-cube) using two commonly used cluster-
ing procedures: k-Means and model-based clustering. While other methods are available,
characteristics of these clustering procedures make them natural choices for this problem.

3.1 k-Means (With Empty Clusters)

k-Means [6] is a popular iterative descent algorithm for data X = {x1 , x2..., xn}, xi ∈ <
K .

It uses squared Euclidean distance as a dissimilarity measure and tries to minimize within-
cluster distance and maximize between-cluster distance. For a given number of clusters G,
k-Means searches for cluster centers mg and assignments A that minimize the criterion

min
A

G
∑

g=1

∑

A(i)=g
‖xi − mg‖

2.

The algorithm alternates between optimizing the cluster centers for the current assign-
ment (by the current cluster means) and optimizing the cluster assignment for a given set of
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cluster centers (by assigning to the closest current center) until convergence (i.e. cluster as-
signments do not change). It tends to find compact, spherical clusters and requires a priori
both the number of clusters G and a starting set of cluster centers. The final cluster assign-
ment can be sensitive to the choice of centers; a common method for initializing k-Means
is to randomly choose G observations. However, in our hyper-cube, we have a natural set
of starting cluster centers, the 2K skill set profiles at the corners. If students map closely to
their profile corners, k-Means should locate the groups affiliated with the corners quickly.
However, if we are missing students from one or more skill set profiles in our population,
forcing G = 2K clusters will split some clusters unnecessarily. We modify the k-Means
algorithm to allow for empty clusters (or absent skill set profiles) in the following way:

1. Set the starting cluster centers mg to the corners of the K-dim hyper-cube (2K centers).
2. Create the cluster assignment vector A by assigning each Bi to the closest mg.
3. For all clusters g, if no Bi is assigned to mg, i.e. ∑ IA(i)=g = 0, then mg remains the

same. Else, mg =
∑n

i=1 IA(i)=g·Bi
∑n

i=1 IA(i)=g
.

4. Alternate between 2) and 3) until the cluster assignment vector A does not change.

This flexible k-Means variation allows for empty clusters or fewer clusters than origi-
nally requested and removes the constraint that there be one cluster per skill set profile.

3.2 Model-based Clustering

Model-based clustering [4,5,11] is a parametric statistical approach that assumes: the
data X = {x1, x2, ..., xn}, xi ∈ <

K are an independently and identically distributed sample
from some unknown population density p(x); each population group g is represented by a
(often Gaussian) density pg(x); and p(x) is a weighted mixture of these density components,
i.e.

p(x) =
G

∑

g=1
πg · pg(x; θg)

where ∑

πg = 1, 0 < πg ≤ 1 for g = 1, 2, ...,G, and θg = (µg,Σg) for Gaussian compo-
nents. The method finds estimates for the number of clusters G as well as their centers and
variances (µg,Σg) that maximize a chosen information criterion. Essentially, it finds the
weighted combination of Gaussian densities that “best fits” the data. While it may require
the groups to have Gaussian densities, it is very flexible (unlike k-Means) on the shape,
volume, and orientation of the densities. This freedom allows model-based clustering to fit
a wide array of student groups of different shapes and sizes.

Both methods return a set of cluster centers and variances and an assignment vector
mapping each Bi to a cluster. They do not, however, automatically assign a natural skill set
profile (hyper-cube corner) to each cluster. Ideally, we have 2K clusters, each closest to a
unique corner. In reality, some corners will have no students nearby. The k-Means algo-
rithm has been altered to allow for this option; model-based clustering estimates centers in
high-frequency areas and should not put a center near an empty corner. We do not advocate
a one-to-one mapping of clusters to corners; clusters near areas of uncertainty in the hyper-
cube should be identified as such. If a cluster of students is centered at {0.12, 0.88, 0.55},
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they should be labeled as likely not having skill 1, likely having skill 2, and uncertain on
skill 3. This conservative classification will help teachers avoid misclassifying students. To
classify a new student, we calculate the capability vector and assign to the nearest cluster.

3.3 Subspace Clustering

If few items require skill k, Bik only take a few unique values. For example, if three
items need skill k, Bik ∈ {0, 1

3 ,
1
2 ,

2
3 , 1}. Clustering on the K-dimensional hyper-cube may not

perform well as students will map to only a few (K-1)-dimensional hyper-cubes. Instead
we recommend conditioning on the coarsely gridded dimension (skill k, where students
are already well-separated) and clustering on the (K-1)-dimensional conditional subspaces
(repeating as needed).

4 Examples
For our simulated data, we use the deterministic inputs, noisy “and” gate model (DINA;

[10]) a conjunctive cognitive diagnosis model. The DINA model item response form is

P(Yi j = 1 | ηi j, s j, g j) = (1 − s j)ηi jg1−ηi j
j

where αik = I
{Student i has skill k} indicates if student i possesses skill k, ηi j =

∏K
k=1 α

q jk
ik

indicates if student i has all skills needed for item j, for item j, s j = P(Yi j = 0 | ηi j = 1)
is the slip parameter and g j = P(Yi j = 1 | ηi j = 0) is the guess parameter. If a student is
missing any of the required skills, the probability that they will answer an item correctly
drops due to the conjunctive assumption.

When simulating data from the DINA model, we first fix skill difficulties and inter-skill
correlation and generate true skill set profiles Ci for each student. If skills are of equal diffi-
culty with little or no inter-skill correlation, students are evenly spread among the 2K natural
skill set profiles. If skill difficulty varies, skill set profiles with only “easy” skills will have
more students than those including the “hard” skills. High inter-skill correlation pulls stu-
dents toward the no mastered skills and all mastered skills corners (Ci = {0}, {1}). Next we
draw slip and guess parameters from a random uniform distribution (s j ∼Unif(0,0.30); g j ∼

Unif(0,0.15)). Given profiles and slip/guess parameters, we generate the student response
matrix Y . Prior to clustering, we remove 10% of the responses completely at random.

For these examples we know the true underlying skill set profiles Ci and can calculate
their agreement with the clustering partitions using the Adjusted Rand Index (ARI; [9]), a
common measure of agreement between two partitions. The expected value of the ARI is
zero and the maximum value is one, with larger values indicating better agreement.

4.1 Simulated DINA Data

In Example 1, we generated response data for N = 250 students for J = 30 items, K = 2
skills. The Q-matrix contains only single skill items, 15 items per skill. The skills are equal
difficulty with an inter-skill correlation of 0.25. Figure 2(a) shows the results. Clusters are
number/color coded with triangle centers. We asked k-Means for 2K = 4 clusters; all
students were clustered correctly (ARI = 1). Model-based clustering chooses five clusters

5



(ARI = 0.926). The “extra” high frequency area near {1, 1} results from the close proximity
or identical locations of the 19 students in Cluster 5. Teachers could interpret these results
as two groups with similar skill 2 mastery but different skill 1 mastery.
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Figure 2: Simulated data examples for K = 2, 3 skills for single skill and multiple skill items, 10%
missing responses. Clusters are color/number coded, centers denoted by black triangles.

In Example 2, we simulated as in Example 1 but increased the number of skills to
K = 3. Again the Q-matrix was designed to only include single skill items, 10 items per
skill. Here, both k-Means and model-based clustering recovered the true skill set profiles
(ARI=1). Figure 2(b) shows the clustering results for both methods.

For Example 3, we simulated as in Example 2 but used a balanced design Q-matrix
including multiple skill items where each skill appeared by itself in four items, in four
double skill items with each of the other two skills, and in three triple skill items. Results
are in Figure 2(c). Both methods find clusters of students showing mastery of all three skills
in the back upper right corner near the {1, 1, 1} skill set profile. However, the remaining
students are pulled toward the front lower left corner (the {0, 0, 0} skill set profile), a direct
result of the combination skill items. If a student incorrectly answers a multiple skill item,
all skills required by that item are penalized (not just the unmastered skills). We have
seen that a balanced design negates the penalty effect (ARI = 0.837, 0.829); the remaining
clusters are effectively scaled and maintain their separation.

The datasets presented are missing 10% of the responses; we compare their results to
those for only students not missing any responses. In educational data mining, we com-
monly use case-wise deletion of students to generate a complete dataset. This method is
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impractical here as it leaves us with 11, 10, and 15 students respectively. Instead we use
the original generated response matrices prior to removing responses at random. The B-
matrices are re-calculated and clustered. Only Example 3 had different ARIs. When using
the complete data set, the ARI for k-Means increases from 0.837 to 0.880, for model-based
clustering, 0.829 to 0.946. These jumps are expected as the lack of missingness increases
the number of items seen (and the fineness of the grid) and decreases the relative effect
of the penalty associated with incorrectly answering a multiple skill item; the resulting
clusters are less removed from the corners.

A higher dimensional example with N = 1000 students, J = 80 items, and K = 20 skills
was also explored. In this case there were 425 unique latent classes used to generate the
data. Model-based clustering found 424 clusters and had an ARI of 0.99. Giving k-means
220 starting centers is unreasonable; we’re currently developing methods to systematically
and appropriately choose a smaller set of starting centers.

4.2 Assistment Data
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Figure 3: Assistment System example of conditional k-Means clustering on the B-matrix; clusters
are color/number coded. The table shows the cluster centers.

For our real data, we use a subset of 26 items requiring three skills (for easy visual-
ization) from the Assistment System online mathematics tutor [7]. The Q-matrix is unbal-
anced; Skill 1 (Evaluating Functions) appears in eight items, Skill 2 (Multiplication) in 20
items, and Skill 3 (Unit Conversion) in two items. Overall, 551 students answered at least
one item, however there is a large amount of missing data (57%). Recall, if student i did not
see any items requiring skill k, Bik = 0.5. Since Unit Conversion appears in only two items,
BiUC ∈ {0, 1

2 , 1}. The three corresponding planes are visible in Figure 3. We condition the
unique BiUC values and apply our k-Means variation (Section 3.1) to each plane. The final
cluster centers are in the table in Figure 3. k-Means is preferable here because the limited
number of unique values in the Evaluate Functions skill dimension leads to instability in
the more flexible model-based clustering models. The planes corresponding to BiUC = 0
and 0.5 each have four clusters; the plane for BiUC = 1 has two. There are natural interpre-
tations for each of the clusters. For example, a teacher might interpret Cluster 9 as students
who know Unit Conversion and Multiplication, but are uncertain on Evaluating Functions.
Cluster 10 could be interpreted as the students who have mastered all three skills.
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5 Conclusions and Future Work
We derived a capability matrix to summarize student skill mastery for use in clustering

algorithms. In simulated datasets, the method performed well (i.e., high values of ARI).
In the Assistments data the method responded well to missing data, allowing us to draw
conclusions for the skills that students have seen and distinguish the skills that require
more assessment. Early results suggest that the Q-matrix design plays a large role in the
location and interpretation of the clusters. Finally, we visually presented examples with
K = 2 and K = 3 skills and showed the method scales to a larger number of skills.

Currently, we are comparing our results to other student skill knowledge estimates. For
example, using WinBUGS [13], the DINA model estimates produce essentially the same
profile clusters for the simulated datasets; however, it runs around 700 times more slowly.
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