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Preface

This thesis provides an overview of the research I have carried out at Biomathematics & Statistics
Scotland (BioSS) during the last eleven years. I have divided it into two parts, covering the two
main areas of my contributions: statistical phylogenetics and computational systems biology. The
objective is to present a high-level overview of my research, so as to outline its main ideas, describe
the underlying methodological concepts, put the work into the context of other state of the art
paradigms, and summarize its main findings. For the detailed mathematical derivations, algorith-
mic implementations, and simulation procedures, I refer the reader to my original publications.
In most chapters I have included particular examples of data analysis. These are to be taken as
illustrative rather than exhaustive, to give the reader a feel for typical application areas. Com-
prehensive comparative evaluations are mostly available from my papers, even if not specifically
pointed out in the text. I have largely refrained from including detailed mathematical descriptions.
The equations that I have included are mostly of a general nature, so as to sketch the essential
concepts and methodological framework. Again, the reader is referred to my original papers for
the specific details. These papers are cited by number, with numbers included in square brackets.
This is to be distinguished from equations, which are labelled by numbers in standard brackets.
To distinguish my own articles from citations of other researchers’ papers, I precede the former
by my initials. As an example, [DH12] refers to the twelfth article in my publication list, while
[12] refers to the twelfth article in the general bibliography. Both lists are included as separate
sections at the end. For environmental reasons, I have not attached my papers as hard copies
to this document. Instead, I have made them available as PDF files on the following website:
http://www.bioss.ac.uk/∼dirk/SelectedPublications. The names of the files are identical to
the citation labels, except for my book [DH1], which I have divided into chapters. For instance, to
obtain the twelfth paper from my publication list, one has to download file DH12.pdf. The second
chapter of my book is available in file DH1 chapter2.pdf.

1



My hope is that this thesis is a useful document that can stand on its own, to review the ‘wood’ of
general themes and concepts without climbing the ‘trees’ of methodological and implementational
details. The prospective target audience are statisticians and machine learning researchers with
an interest in postgenomic biology, as well as biologists with an interest in quantitative methods.
However, to benefit form the first part of this thesis, a certain background in phylogenetics is
required. This does not only include a familiarity with the concept of a phylogenetic tree, but also
requires an understanding of the three established paradigms of phylogenetic inference: clustering
based on pairwise sequence distances, maximum parsimony, and likelihood methods. To keep
this document self-contained, I have therefore included, in Chapter 1, a brief review of statistical
phylogenetics. The remaining chapters describe my own research.

Synopsis

The final decade of the last millennium witnessed a dramatic revolution in molecular biology. This
revolution was heralded by a large-scale DNA sequencing effort in 1995, when the entire 1.8 million
base pairs of the genome of the bacterium Haemophilus influenzae was published. Since then,
the amount of DNA sequences in publicly accessible data bases has been growing exponentially,
including the complete 3.3 billion base-pair DNA sequence of our own species. In addition, new
high-throughput technologies like microarrays and yeast 2-hybrid assays have resulted in a deluge
of further data, related to the transcriptome, the spliceosome, the proteome, and the metabolome.
This “omic” explosion has led to a paradigm shift in molecular biology. While the pre-genomic
era was dominated by hypothesis-driven reductionist approaches, founded on qualitative methods
and characterized by a certain ingrained scepticism about the merits of mathematical modelling,
post-genomic molecular biology takes a holistic, systems-based approach, which is data-driven and
increasingly relies on quantitative methods. The problems faced are essentially statistical, due
to the inherent complexity and stochasticity of biological systems, the random processes intrinsic
to evolution, and the unavoidable error-proneness and variability of high-throughput postgenomic
assays. In the present thesis, I shall review the contributions I have made to this field during the
last eleven years, ever since starting my employment as a researcher in “statistical bioinformatics”
at BioSS.

Part 1 will focus on pattern recognition in DNA sequence alignments within a phylogenetic context.
I will start off, in Chapter 1, with a brief review of molecular phylogenetics, based on [DH1],
and then discuss the problem of interspecific recombination. The underlying assumption of most
phylogenetic tree reconstruction methods is that there is one set of hierarchical relationships among
the taxa. While this is a reasonable approach when applied to most DNA sequence alignments, it
can be violated in certain bacteria and viruses due to interspecific recombination. The resulting
transfer or exchange of DNA subsequences can lead to a change of the branching order (topology) in
the affected region, which results in conflicting phylogenetic information from different regions of the
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alignment. If undetected, the presence of these so-called mosaic sequences can lead to systematic
errors in phylogenetic tree estimation. Their detection, therefore, is a crucial prerequisite for
consistently inferring the evolutionary history of a set of DNA sequences.

Summarizing my work in [DH11,DH17,DH21,DH22,DH29], Chapter 2 describes a graphical ex-
ploratory method based on moving a window along the DNA sequence alignment and computing a
divergence measure of a phylogenetic signal as a potential indicatior of evidence for recombination.
The phylogenetic signal chosen is the posterior distribution of phylogenetic tree topologies, which
is based on the Bayesian approach to phylogenetic inference, and which is practically computed
by repeatedly running Markov chain Monte Carlo (MCMC) simulations on different subsets of
the DNA sequence alignment [DH29]. This method can be refined with a topology based pruning
scheme [DH21] and the combination with a Bayesian hidden Markov model [DH17].

Chapter 3 (summarizing my work in [DH15,DH25,DH26,DH28]) describes an approach based on
phylogenetic HMMs. The method is based on the observation that interspecific recombination
usually leads to a change of the underlying phylogenetic tree topology. The idea is to introduce
a hidden state that represents the tree topology at a given site. A state transition from one
topology into another corresponds to a recombination event. To introduce correlations between
adjacent sites, the hidden states are given a Markovian dependence structure. Thus, the standard
model of a phylogenetic tree is generalized by the combination of two probabilistic models: a taxon
graph (phylogenetic tree) representing the relationships among the taxa, and a site graph (HMM)
representing dependencies between different sites in the DNA sequence alignments. Changepoints
of mosaic segments in the alignment are predicted by state transitions in the site graph. While
this method can only deal with a small number of sequences simultaneously, it has the potential to
predict the locations and changepoints of recombinant regions more accurately than what can be
achieved with most existing techniques.

A shortcoming of phylogenetic HMMs is their inability to differentiate between recombina-
tion and rate heterogeneity. I address this issue in Chapter 4 (summarizing my work in
[DH9,DH10,DH20,DH46]) by extending the HMM approach to a factorial HMM (FHMM). The
states of the first hidden chain represent tree topologies, as before, and transitions between these
states are indicative of recombination events. The states of the second independent hidden chain
represent different global scaling factors of the branch lengths, and transitions between these rate
states indicate rate heterogeneity, potentially related to variations in the selective pressure. I dis-
cuss different Bayesian inference schemes based on Gibbs sampling [DH20] and transdimensional
reversible jump MCMC [DH9], Bayesian model selection [DH10] and within-codon effects [DH46].

Part 2 will be devoted to systems biology. I start, in Chapter 5 (summarizing my work in
[DH19,DH50]) with protein-protein interactions involved in the formation of macromolecular com-
plexes and biochemical pathways. Since high-throughput experiments like yeast two-hybrid and
phage display are expensive and intrinsically noisy, it would be desirable to more specifically tar-
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get or partially bypass them with complementary in silico approaches. The chapter presents a
probabilistic discriminative approach to ab initio prediction of protein-peptide interactions from
sequence data and discusses how susceptibility to overfitting can be avoided by adopting a Bayesian
a posteriori approach based on a Laplacian prior in parameter space.

Molecular pathways consisting of interacting proteins underlie the major func-
tions of living cells, and a central goal of systems biology is the elucida-
tion of their structure and regulatory mechanisms. Summarizing my work in
[DH3,DH4,DH5,DH12,DH13,DH14,DH16,DH18,DH23,DH41,DH42,DH44,DH45], Chapter 6
covers the reconstruction of gene regulatory networks from transcriptomic profiles with probabilis-
tic graphical models. It discusses the evaluation of the network reconstruction accuracy from a
realistic simulation study [DH18,DH23], the systematic integration of prior knowledge in a Bayesian
framework [DH13,DH16], the inference of evolving network structures during an organism’s life
cycle [DH41,DH42], the approximate modelling of nonlinear regulation [DH12,DH44,DH45], and
improved MCMC schemes [DH3,DH4,DH14] for Bayesian learning of Bayesian networks.

Transcriptional gene regulation is primarily controlled by diverse regulatory proteins called tran-
scription factors (TFs), which bind to specific DNA sequences and thereby repress or initiate gene
expression. The regulation thus depends on (TF) activities, that is the concentration of the TF sub-
population capable of DNA binding. The methods described in Chapter 6 approximate the activities
of TFs by their gene expression levels. However, TFs are frequently subject to post-transcriptional
and post-translational modifications, which may affect their DNA binding capability. Consequently,
gene expression levels of TFs may only contain limited information about their actual activities.
In Chapter 7 (summarizing my work in [DH8]) I discuss a method that addresses this difficulty
by treating TFs as latent variables and inferring their activity profiles along with the regulatory
network structure from microarray and immunoprecipitation data by application of the variational
Bayesian expectation maximization algorithm.

The thesis concludes in Chapter 8 with an outlook on how methods from computational systems
biology can be applied and adapted to modern ecology. Summarizing my work in [DH5], the
chapter discusses the methodological hurdles that have to be overcome to infer species interaction
networks from species distribution data. Understanding these networks is of growing importance
for the protection of biodiversity, as they help us to predict potential knock-on effects of a biological
control agent, or to understand how species will respond to climate change.
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Molecular Phylogenetics
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Chapter 1

Introduction

This chapter provides a brief review of molecular phylogenetics, based on [DH1]. I
introduce the concepts of rooted and unrooted phylogenetic trees and summarize the
key ideas and relative merits of the three established paradigms of phylogenetic in-
ference: clustering based on pairwise sequence distances, maximum parsimony, and
likelihood methods. I will then discuss the problem of interspecific recombination.
The underlying assumption of most phylogenetic tree reconstruction methods is that
there is one set of hierarchical relationships among the taxa. While this is a reason-
able approach when applied to most DNA sequence alignments, it can be violated in
certain bacteria and viruses due to interspecific recombination. The resulting trans-
fer or exchange of DNA subsequences can lead to a change of the branching order
(topology) in the affected region, which results in conflicting phylogenetic information
from different regions of the alignment. If undetected, the presence of these so-called
mosaic sequences can lead to systematic errors in phylogenetic tree estimation. Their
detection, therefore, is a crucial prerequisite for consistently inferring the evolutionary
history of a set of DNA sequences.

1.1 Background on Phylogenetic Trees

The objective of phylogenetics is to reconstruct the evolutionary relationships among different
species or strains (generic name taxa1) and to display them in a binary or bifurcating tree-structured

1In bacteria and viruses it is difficult to distinguish between species and strains. This chapter is rather sloppy in
the use of these terms, and occasionally uses both terms synonymously.
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Human Rabbit Mouse Chicken Frog

Time

Opossum

Figure 1.1: Rooted phylogenetic tree. Leaf nodes represent extant or contemporary species. Hidden nodes
represent hypothetical ancestors, where lineages bifurcate (so-called speciation events).

graphical model called a phylogenetic tree. An example is given in Figure 1.1. The leaves of a
phylogenetic tree represent contemporary species, like chicken, frog, mouse, etc. The inner or
hidden nodes represent hypothetical ancestors, where a splitting of lineages occurs. These so-
called speciation events lead to a diversification in the course of evolution, separating, for instance,
warm-blooded from cold-blooded animals, birds from mammals, primates from rodents, and so on.

Figure 1.1 shows a so-called rooted tree. The node at the bottom of the tree represents the most
recent common ancestor, from which ultimately all other species descended. The edges are di-
rected, related to the direction of time: the closer a node is to the root of the tree, the older is
the corresponding speciation event. Inferring this direction of evolutionary processes, however, is
difficult and not amenable to most modelling and inference methods. Consequently, phylogenetic
trees will be displayed as unrooted trees, shown in Figure 1.2. As opposed to a rooted tree, the
edges in an unrooted tree are undirected, and no node is in the distinguished position of a root.2

A phylogenetic tree conveys two types of information. The topology defines the branching order
of the tree and the way the contemporary species are distributed among the leaves. For example,
from Figures 1.1 and 1.2 we learn that the mammals – human, chicken, mouse, and opossum –
are grouped together and are separated from the group of animals that lay eggs – chicken and
frog. Within the former group, opossum is grouped out because it is a marsupial and therefore

2We can regain a rooted from an unrooted tree by including an outgroup in the analysis. An outgroup is a (set
of) species that is known a priori to be less related to any of the other taxa used in the study, and the root will
therefore be located on the branch between the other taxa and the outgroup. For example, in Figure 1.2, frog is the
outgroup, because it is the only cold-blooded animal among a set of warm-blooded animals. By positioning the root
on the branch leading to frog, we regain the rooted tree of Figure 1.1 (although the exact position of the root on this
branch is not known).
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Figure 1.2: Unrooted phylogenetic tree. Leaf nodes represent contemporary species, hidden nodes represent
hypothetical ancestors. The tree conveys two types of information. The topology defines the branching order of
the tree and the way the contemporary species are distributed among the leaves. The branch lengths represent
phylogenetic time, measured by the average amount of mutational change.

less closely related to the other “proper” mammals. Exchanging, for instance, the leaf positions
of opossum and rabbit changes the branching order and thus leads to a different tree topology.
For n species there are, in total, (2n − 3)!! different rooted, and (2n − 5)!! different unrooted tree
topologies, where !! denotes double factorial: (2n− 5)!! = (2n− 5)(2n− 7)...1. For a proof, see e.g.
Chapter 4 in [DH1]. In what follows, we will use the integer variable S ∈ {1, 2, . . . , (2n − 5)!!} to
label the different unrooted tree topologies.

The second type of information we obtain from a phylogenetic tree is given by the branch lengths,
which represent phylogenetic time,3 measured by the average amount of mutational change. For
example, Figure 1.2 shows a comparatively long branch leading to the leaf with frog. This long
branch indicates that a comparatively large number of mutations separates frog from the other
animals, and that a large amount of phylogenetic time has passed since the lineage leading to frog
separated from the remaining tree. This conjecture is reasonable because frog is the only cold-
blooded animal, whereas all the other animals are warm-blooded. Note that the mutation rate is
usually unknown, and we can therefore not infer physical time from the branch lengths. I will revisit
this distinction between physical time and phylogenetic time in Section 1.4; see equation (1.1).

An unrooted tree for n species has n − 2 inner nodes, and thus m = n + (n − 2) − 1 = 2n − 3
branches. In what follows, individual branch lengths will be denoted by wi, and the total vector of
branch lengths will be denoted by w = (w1, . . . , w2n−3).

3 I use phylogenetic time with the meaning evolutionary change, which is given by the product of physical time
and a nucleotide substitution rate. See equation (1.1) for an exact definition.
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Figure 1.3: Phylogenetic inference from DNA sequence alignments. The top figure shows a section of
the DNA sequence alignment for the β-globin encoding gene in six species. The total alignment has a length of 444
nucleotides. The bottom figure shows a phylogenetic tree inferred from this alignment with the method of maximum
likelihood, to be discussed in Section 1.4.

The objective of statistical phylogenetics is to develop methods for reconstructing phylogenetic
trees. Since the driving forces of evolution are mutations, that is, errors in the replication of DNA,
it seems reasonable to base the inference on a comparison of DNA sequences4 obtained from the
different species or strains of interest. This approach has become viable by major breakthroughs in
DNA sequencing techniques, with the number of DNA sequences in publicly accessible data bases
growing exponentially.

DNA is composed of an alphabet of four nucleotides, which come in two families: the purines
adenine (A) and guanine (G), and the pyrimidines cytosine (C) and thymine (T). DNA sequencing
is the process of determining the order of these nucleotides. After obtaining the DNA sequences of
the taxa of interest, we need to compare homologous subsequences, that is, corresponding regions
of the genome that code for the same protein. More precisely, we have to compare homologous

4Earlier approaches to phylogenetics were based on the analysis of non-molecular data, for instance, morphological
characters. This chapter focuses on phylogenetic analysis based on molecular sequence data, mainly DNA sequences.
The advantages of this more recent approach of molecular phylogenetics over classical non-molecular phylogenetics
are discussed in [103].
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Single substitution

1 change, 1 difference

Coincidental substitution Parallel substitution

2 changes, 1 difference 2 changes, no difference

C G

A

G G

A

Multiple substitution
2 changes, 1 difference

Back substitution
2 changes, no difference

A
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C

C
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C

Figure 1.4: Hidden and multiple nucleotide substitutions. The figure contains several phylogenetic trees,
which display different nucleotide substitution scenarios. In each tree, the circles at the leaf level represent contempo-
rary sequences from a DNA sequence alignment, for which a pairwise distance is to be computed. The letters inside
these circles represent nucleotides at a given site in the alignment. Nodes further down in the tree hierarchy (that
is, below the leaf nodes) represent (usually extinct) ancestors. The letters at these nodes show nucleotides at the
corresponding site in the ancestral DNA sequence. For the tree in the top left, the observed number of nucleotide
substitutions is identical to the actual number of substitutions that have occurred during evolution. However, in
all the other cases, the actual number of nucleotide substitutions is larger than the observed number, hence a naive
approach to computing pairwise evolutionary distances systematically underestimates their true values.

nucleotides, that is, nucleotides which have been acquired directly from the common ancestor of
the taxa of interest. The process of establishing which regions of a set of DNA sequences are
homologous and should be compared is called DNA sequence alignment. Throughout this thesis I
will assume that the sequence alignment is given. For more comprehensive review, see [36].

The top of Figure 1.3 shows a small section of the DNA sequence alignment obtained from the β-
globin encoding genes in six species (four mammals, one bird, and one amphibian). Rows represent
different species, columns represent different sites or positions in the DNA sequence alignment. At
the majority of sites, all nucleotides are identical, reflecting the fact that the sequences compared
are homologous. At certain positions, however, differences occur, resulting from mutational changes
during evolution. In the fifth column, for instance, human, rabbit, mouse, and opossum have a C,
chicken has an A, and frog has a G. This reflects the fact that the first four species are mammals
and therefore more closely related to each other than to the two remaining species. Obviously,
however, nucleotide substitutions are not as deterministically related to the phylogenetic tree as in
this example. Evolution is driven by stochastic forces that act on genomes, and our objective is to

11



T T A T T A A C G
A A T T T A A C G
A A A A A T A C G
A A A A A A T C G

Sequences
1
2
3
4

Distances

2
3

2 31

4 5 4 2
5
3

4

Figure 1.5: Information loss of distance methods. By computing pairwise evolutionary distances from a
DNA sequence alignment, the high-dimensional space of DNA sequences is mapped into the low-dimensional space
of pairwise distances. This substantial dimension reduction leads to an inevitable loss of information.

discern significant similarities between diverged sequences amidst a chaos of random mutation and
natural selection. Faced with noisy data resulting from intrinsically stochastic processes, the most
powerful methods make use of probability theory. Based on a mathematical model of nucleotide
substitution in terms of a homogeneous Markov chain, a phylogenetic tree can be interpreted as
a probabilistic generative model, which allows us to compute the likelihood of an observed DNA
sequence alignment. The practical computation draws on well-established inference algorithms for
Bayesian networks5, which allows the application of standard inference procedures from statistics
and machine learning6. In Section 1.4 I provide a brief review of probabilistic model-based inference
in phylogenetics. I shall motivate this approach by first briefly describing the shortcomings of the
older approaches of sequence distance-based clustering and maximum parsimony.

1.2 Clustering based on Pairwise Sequence Distances

A straightforward way to get a phylogenetic tree from a DNA sequence alignment is as follows:
(1) count the number of nucleotides by which two DNA sequences differ; (2) repeat this procedure
for all pairs of sequences and compute a table of pairwise distance scores; (3) apply a clustering
algorithm, like Neighbour Joining [124, 138], to obtain a dendrogram. The approach appears
attractive because it avoids the NP-hardness of parsimony and likelihood methods, discussed below.
However, it suffers from three fundamental shortcomings. First, there is no guarantee that the
resulting tree is optimal in any sense, as the method does not aim to optimize any objective function.
Second, by counting the number of different nucleotides, the true number of nucleotide substitution
events is systematically underestimated and requires a (heuristic) correction; see Figure 1.4 for an
illustration. Third, the method effectively maps the high-dimensional space of DNA sequences into
the low-dimensional space of pairwise distances, as illustrated in Figure 1.5, and this dimension
reduction incurs a substantial loss of information. While being computationally cheap, clustering
methods based on pairwise sequence distances are thus intrinsically suboptimal and should be

5See e.g. Chapter 2 in [DH1] for a review.
6See e.g. Chapter 1 in [DH1] for a review.
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avoided if at all possible.

1.3 Maximum Parsimony

The basic idea behind maximum parsimony, introduced in [44], is that the optimal phylogenetic
tree is the one requiring the smallest number of nucleotide substitutions along its branches. Take,
as an example, Figure 1.6, which shows an alignment of four DNA sequences and a hypothetical
phylogenetic tree, in which strain 1 is grouped with strain 2, and strain 3 is grouped with strain 4.
We pick a column of the alignment and distribute the nucleotides across the leaf nodes. Next, we
try to reconstruct the evolutionary history by assigning nucleotides to the hidden nodes, which
correspond to ancestral, unobserved sequences. For the first column of the alignment, strains 1
and 2 have an A, while strains 3 and 4 have a C. If we assign nucleotides to the hidden nodes
arbitrarily, say a G to the first hidden node, and a T to the second, as shown on the right of
Figure 1.6, we can get up to five nucleotide substitution events needed for a reconstruction of
evolution. However, a more skilful choice, shown at the bottom of Figure 1.6, can reduce this
number to a single nucleotide substitution. Under the principle of parsimony this reconstruction is
preferred over the less parsimonious reconstruction that requires five substitutions.

Next, we have to compare different trees. With four taxa, we have three unrooted tree topologies:
strain 1 can either be grouped with strain 2, with strain 3, or with strain 4. For a given column
of nucleotides from the alignment, we repeat the previous process of assigning nucleotides to the
hidden nodes in the most parsimonious way. This is repeated for each of the possible tree topologies
in turn. We then count the number of nucleotide substitutions needed. An example is given in
Figure 1.7 where, for the first column in the alignment, the tree that groups strains 1 and 2
against strains 3 and 4 requires the smallest number of substitutions and is therefore preferred
by parsimony. In fact, the whole process is repeated for all sites in the alignment. The total
number of nucleotide substitutions is determined for each tree, and the tree that invokes the least
total number of nucleotide substitutions is selected as the best candidate for the true evolutionary
tree. Parsimony is not limited in the number of taxa, and the restriction to four sequences in the
previous example was chosen for illustration purposes only. Note, however, that the number of tree
topologies grows super-exponentially with the number of taxa and that the optimization problem
is NP–hard [134]. Consequently, iterative and approximate methods are needed for large sequence
alignments of many taxa.

As opposed to distance-based clustering, reviewed in the previous section, parsimony is an opti-
mality method that minimizes a well-defined objective function: the total number of nucleotide
substitutions along the tree branches. This approach shows a certain resemblance to minimum
description length [113] in information theory and allows, unlike clustering methods, an evaluation
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Figure 1.6: Illustration of parsimony: single tree. For each column of nucleotides in the alignment, the
evolutionary history is to be reconstructed by assigning nucleotides to the hidden nodes. An arbitrary assignment,
shown on the right, can give up to five nucleotide substitutions needed for a reconstruction of evolution. A more
skilful choice, shown at the bottom, reduces this number to a single substitution. Under the principle of parsimony
this reconstruction is preferred over the less parsimonious reconstruction that requires five substitutions.

of the quality of a reconstructed tree. However, as opposed to the methods to be described in the
next section, parsimony is not based on a probabilistic generative model. Proponents of parsimony
used to consider this model-free inference an advantage [43], but it has now become clear that
it is, in fact, the limiting case of a model-based approach – for the limit of a highly implausible
evolutionary scenario. For details, see Chapter 4 in [DH1].

The fundamental objection to parsimony is that it is not consistent. Consistency is the desirable
feature of a method to converge to the right answer given enough data. In certain evolutionary
scenarios, however, parsimony gives the wrong tree even if we add more and more data [40, 41]. The
classic scenario where this might happen has been termed long branch attraction and is illustrated
in Figures 1.8 and 1.9.
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Figure 1.7: Illustration of parsimony: tree selection. The figure shows the three unrooted tree topologies
that can be obtained with four taxa (where the taxa are represented by numbers). For a given site in the DNA
sequence alignment, and for each of the possible tree topologies in turn, nucleotides are assigned to the hidden
nodes in the most parsimonious way; compare with Figure 1.6. The tree in the top left, which invokes only a single
substitution, is preferred over the other, less parsimonious trees, which require at least two substitutions. The whole
process is repeated for all sites in the alignment, and the total number of nucleotide substitutions is counted, for each
tree in turn. Then, the tree that invokes the least total number of nucleotide substitutions is selected as the best
candidate for the true evolutionary tree.

1.4 Likelihood Methods

Likelihood methods are based on an explicit mathematical model of nucleotide substitution, which
allows the formulation of the inference process in terms of a probabilistic generative model. This
fact renders likelihood methods considerably more powerful than clustering based on pairwise se-
quence distances (Section 1.2) or the method of maximum parsimony (Section 1.3). As opposed
to clustering, inference is based on an optimality function, which allows us to objectively compare
different trees and to test hypotheses about evolutionary scenarios. Inference is based on the whole
DNA sequence alignment, which avoids the information loss inherent in pairwise sequence distance
methods (as illustrated in Figure 1.5). By basing the inference on an explicit mathematical model
of nucleotide substitution, the shortcomings of “model-free” inference and the inconsistency of max-
imum parsimony are avoided. In particular, likelihood methods subsume maximum parsimony as
a limiting case for a rather unrealistic evolutionary scenario7.

7See e.g. Chapter 4 of [DH1] for details.
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Figure 1.8: Felsenstein zone. The figure shows a phylogenetic tree of four taxa and two types of branch lengths,
denoted by d2 and d3. For configurations with large branch lengths d3 and small branch lengths d2 (the so-called
‘Felsenstein zone’), the method of maximum parsimony is known to systematically infer the wrong tree topology, as
shown in [40]. An explanation is given in Figure 1.9.

The driving forces for evolution are nucleotide substitutions, which can be modelled as transitions
in a 4-element state space, shown in Figure 1.10. P (y|x,w), where x, y ∈ {A,C,G, T}, denotes
the probability of a transition from nucleotide x into nucleotide y, conditional on the elapsed
phylogenetic time w. The latter is given by the product of an unknown nucleotide substitution rate
α with physical time t:

w = αt (1.1)

To rephrase this: P (y|x,w) is the probability that nucleotide y is found at a given site in the DNA
sequence given that w phylogenetic time units before the same site was occupied by nucleotide x.

An intuitively plausible functional form for these probabilities is shown on the right of Figure 1.10.
For w = 0, there is no time for nucleotide substitutions to occur. Consequently, P (A|A,w = 0) = 1,
and P (C|A,w = 0) = P (G|A,w = 0) = P (T |A,w = 0) = 0. As w increases, nucleotide substi-
tutions from A into the other states lead to an exponential decay of P (A|A,w) and, concurrently,
an increase of P (C|A,w), P (G|A,w), and P (T |A,w). The rate of this decay or increase depends
on the type of nucleotide substitution, as illustrated in Figure 1.11. Nucleotides are grouped into
two families: purines (A and G), and pyrimidines (C and T). Nucleotide substitutions within a
nucleotide class (purine→ purine, pyrimidine→ pyrimidine), so-called transitions,8 are more likely
than substitutions between nucleotide classes (purine ↔ pyrimidine), so-called transversions. For
w →∞, the system ‘forgets’ its initial configuration as the result of the mixing caused by an increas-
ing number of nucleotide substitutions (including backsubstitutions and multiple substitutions, as
illustrated in Figure 1.4). Consequently, P (y|x,w)→ Π(y) for w →∞, where x, y ∈ {A,C,G, T},
and Π(y) is the equilibrium distribution (here: Π(y) = 1/4 ∀ y).

Various nucleotide substitution models exist, depending on the number of free parameters, as I
have reviewed in in Chapter 4 of [DH1]. For example, in the Kimura model, proposed in [75] and

8Unfortunately this terminology, which is used in molecular biology, leads to a certain ambiguity in the meaning of
the word transition. When we talk about transitions between states, where the states are associated with nucleotides,
as in Figure 1.10, a transition can be any nucleotide substitution event. When we talk about transitions as opposed
to transversions, a transition refers to a certain type of nucleotide substitution.
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Figure 1.9: Failure of parsimony. The plot in the top left shows the true phylogenetic tree, in which the branch
lengths of related taxa differ significantly. When the ratio of the long and short branch lengths exceeds a certain
threshold, parsimony systematically predicts the wrong tree, shown in the top right. For an explanation, consider the
tree in the centre left, which shows two nucleotide substitutions, one on either long branch. When these nucleotide
substitutions are different, both tree topologies give the same score of 2 substitutions. Such nucleotide configurations
are uninformative in that they do not prefer one tree over the other. When the nucleotide substitutions are identical,
which happens, on average, in 25% of the cases, the tree on the right has a parsimony score of 1. This score is lower
than that of the true tree, which is 2. Hence, such so-called homoplasious substitutions support the wrong tree.
When the ratio of the external branch lengths exceeds a critical threshold, these “bad” substitutions outweigh, on
average, the “good” substitutions that support the true tree. Consequently, parsimony will infer the wrong tree.
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Figure 1.10: Mathematical model of nucleotide substitution. Left: Nucleotide substitutions are modelled
as transitions in a 4-element state space. The transition probabilities depend on the phylogenetic time w = αt, where
t is physical time, and α is an unknown nucleotide substitution rate. Right: Dependence of the transition probabilities
(vertical axis) on w (horizontal axis). The graphs were obtained from the Kimura model with a transition–transversion
ratio of 2.
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Figure 1.11: Transitions versus transversions. There are two types of nucleotides, denoted by purines and
pyrimidines. Mutations within a group of nucleotides, called transitions and indicated here by the horizontal arrows,
are more likely than mutations between groups of nucleotides. The latter are called transversions and are shown here
by vertical arrows.

shown in Figure 1.12, the equilibrium distribution is uniform, and the transition-transversion ratio
is a free parameter. If additionally the equilibrium probabilities are free parameters, as proposed in
[58], the model is called the HKY85 model. Under certain regularity conditions, most notably the
independence of nucleotide substitutions at different positions and the assumption that nucleotide
processes are Markovian and homogeneous in time and space, we can compute the probability of
a nucleotide configuration assigned to the leaves of a phylogenetic tree. I have provided a detailed
exposition of this procedure in Chapter 4 of [DH1].

The upshot is that we can compute, for the tth column yt in a DNA sequence alignment (meaning
a vector with the nucleotides in the tth column), the probability P (yt|w, S). This probability
depends on the tree topology, S, and the vector of branch lengths, w, as illustrated in Figure 1.13.
The respective computation can be repeated for every site, 1 ≤ t ≤ N . Under the assumption that
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Figure 1.12: Kimura model of nucleotide substitution. The figure presents a graphical display of the Kimura
model of nucleotide substitutions. The positive parameter α denotes the transition rate, while the positive parameter
β denotes the transversion rate. The thickness of a line is related to the size of the respective rate parameter,
indicating that transitions are more likely than transversions: α > β.

mutations at different sites t are independent of each other – see above – the likelihood P (D|w, S)
of the whole DNA sequence alignment D = {y1, . . . ,yN} factorizes:

P (D|w, S) =
N∏

t=1

P (yt|w, S) (1.2)

Equation (1.2) gives us an objective score or optimality function that opens the way to standard
statistical inference: the frequentist approach based on maximum likelihood, and the Bayesian
approach based on the posterior distribution of trees. Recall that for n species the number of
unrooted phylogenetic trees is (2n− 5)!!. Hence, the number of phylogenetic trees increases super-
exponentially with the number of nodes, and the inference problem is NP-hard. In practice, heuristic
(greedy) search procedures have to be adopted for finding the maximum likelihood configuration,
and MCMC-based techniques are required for sampling trees from the posterior distribution in the
Bayesian approach. An illustration is given in Figure 1.14. I have provided a detailed description
of these methods in Chapter 4 of [DH1].

1.5 Bayesian versus Frequentist Inference

Given a data set D (in our case: a DNA sequence alignment), we want to learn the model S (in
our case: a phylogenetic tree). There are two conceptually different approaches to this inference
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Figure 1.13: Probabilistic approach to phylogenetics. For a given column yt in the DNA sequence alignment,
a probability P (yt|w, S) can be computed, which depends on the tree topology, S, and the vector of branch lengths,
w. This can be done for every site, 1 ≤ t ≤ N , which allows the computation of the likelihood P (D|w, S) of the
whole DNA sequence alignment D = {y1, . . . ,yN}.

problem. In the frequentist or classical school of statistics, the aim is to find the ‘best’ model in a
maximum likelihood sense:

S∗(D) = argmaxSP (D|S) (1.3)

In order to assess the intrinsic uncertainty of inference, this estimation is conceived as being re-
peatable on fictitious data D̃ which could have been generated in hypothetical parallel statistical
universes governed by the same data generating process. From the distribution of S∗(D̃) we can
then obtain confidence intervals. In the Bayesian school of statistics, inference is based solely on
the data D that have been observed. As opposed to the frequentist school, the model S is treated
as a random variable, and inference is based on the posterior distribution P (S|D). For instance,
the best model can be found in a maximum a posteriori sense:

S∗ = argmaxSP (S|D) (1.4)

There have been controversial debates about which school is ‘right’. In the context of phylogenetics,
frequentist statisticians argue that there is only one (unknown) phylogenetic tree, and its properties
are fixed. On these grounds they object to the treatment of S as a random variable. However,
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Figure 1.14: MCMC/greedy search moves in tree space. The figure illustrates a possible move in tree space,
proposed in [80]. First, a backbone connecting four nodes is selected (top left) and extended or shrunk randomly (top
right). Second, one of the two centre branches is randomly selected (bottom left) and then repositioned randomly on
the backbone (bottom right). The first step changes the branch lengths w. The second step may or may not change
the tree topology S; in the present example, it does change the topology. In a greedy search, moves are accepted if
and only if they increase the likelihood. In MCMC, moves are accepted according to the Metropolis-Hastings criterion
[59].

21



Figure 1.15: A comparison between MCMC and bootstrapping. The objective of both the Bayesian
approach based on MCMC and the frequentist approach based on bootstrapping is to explore the uncertainty of
inference, which is related to the curvature of the log likelihood surface. This figure gives an illustration for a simple
one-dimensional case. The Bayesian MCMC approach, shown on the left, explores the log likelihood (or, in the case
of a non-uniform prior, the log posterior) surface with a Markov chain. New configurations are first generated from a
proposal distribution, and then accepted with a certain acceptance probability. Each accepted configuration is stored,
and it contributes to the information about the curvature of the log likelihood surface. The frequentist approach,
shown on the right, aims to find the maximum of the log likelihood surface. This maximum is a point estimate devoid
of any information on uncertainty; consequently, this optimization is repeated several times for different bootstrap
replicas. Information about estimation uncertainty is contained in the spread of the bootstrap maxima, that is, in the
average deviation of the peak in response to resampling the data. Each optimization, however, is time-consuming,
and all the information gathered along the trajectory leading to the peak of the log likelihood surface is eventually
discarded. This waste of information renders bootstrapping much more computationally expensive than the Bayesian
approach, where all the information along the MCMC trajectory is kept.

their reliance on a multitude of hypothetical parallel statistical universes brings about its own
philosophical problems.

For a decision on which path to follow, note that for the type of complex problems typically en-
countered in computational biology, none of the two frameworks leads to any analytically tractable
solutions. The standard approach pursued in frequentist statistics is based on bootstrapping [37]:
data from hypothetical parallel statistical universes are approximated by sampling with replace-
ment exemplars from the observed data, and then repeating the maximum likelihood estimation on
these bootstrap replica. In the Bayesian framework, we typically address the intractability of the
posterior distribution with Markov chain Monte Carlo (MCMC) [27]: we construct a Markov chain
that converges to the posterior distribution in distribution, and then keep samples from that chain
as an approximation to a sample from the true posterior distribution. Applied to the problem of
phylogenetic inference, both approaches lead to a set of phylogenetic trees, from which confidence
estimates can be computed. In particular, we are usually interested in the probability with which
certain species are grouped together (clade support values). While in practice both the frequentist
approach based on bootstrapping and the Bayesian approach based on MCMC tend to give similar
results, the computational costs are drastically different. In a comparative evaluation on a DNA
sequence alignment of 31 whale species, Larget and Simon [80] completed the Bayesian analysis
in 7 hours of CPU time on a standard desktop PC. They estimated that repeating the analysis
with the frequentist approach to the same degree of accuracy would have taken 175 days. This
striking differences is caused by the fact that MCMC makes use of information gathered during its
execution much more efficiently than bootstrapping, as illustrated in Figure 1.15. It is for this prag-
matic rather than any dogmatic reason that in my own work I have elected to adopt the Bayesian
approach.
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Figure 1.16: Influence of recombination on phylogenetic inference. The figure shows a hypothetical
phylogenetic tree of four strains. Recombination is the transfer or exchange of DNA subsequences between different
strains (top diagram, middle), which results in two so-called mosaic sequences (top diagram, margins). The affected
region in the multiple DNA sequence alignment, shown by the shaded area in the middle diagram, seems to originate
from a different tree topology, in which two branches of the phylogenetic tree have been swapped (bottom diagram,
where the numbers at the leaves represent the four strains). A phylogenetic inference algorithm that does not identify
this region is likely to give suboptimal results, since the estimation of the branch lengths of the predominant tree will
be adversely affected by the conflicting signal coming from the recombinant region.

1.6 Recombination

The underlying assumption of the phylogenetic tree reconstruction methods reviewed above is
that there is one set of hierarchical relationships among the taxa. While this is a reasonable
approach when applied to most DNA sequence alignments, it can be violated in certain bacteria
and viruses due to interspecific recombination. Recombination is a genetic process that results
in the exchange or transfer of DNA/RNA subsequences and constitutes an important source of
genetic diversification in certain bacteria and viruses. The resulting mixing of genetic material
can lead to a change of the branching order (topology) of the phylogenetic tree in the affected
region, which results in conflicting phylogenetic information from different regions of the alignment.
Figure 1.16 demonstrates for a simple hypothetical scenario involving four strains how the transfer
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Figure 1.17: Recombination in HIV-1. The left diagram shows a phylogenetic tree of eight established
subtypes of HIV-1. The right diagram represents the sequence of a recombinant strain (RS). When the phylogenetic
analysis is based on the env gene, the RS strain is found to be most closely related to the A subtype. When the
phylogenetic analysis is repeated for the gag gene, the RS strain seems to be most closely related to the G subtype. A
conventional phylogenetic analysis treats the RS sequence as a monolithic entity. This fails to resolve the conflicting
phylogenetic signals stemming from different regions of the alignment, and leads to a distorted “average” tree that is
in a “limbo” state between the two true trees mentioned above. It is therefore vital to identify the mosaic structure
of the RS strain, and to infer different phylogenetic trees for the different regions. Adapted from [116], by permission
of Macmillan Magazines Limited.

or exchange of genetic material between different strains may lead to a change of the phylogenetic
tree topology in the region affected by recombination, which results in conflicting phylogenetic
information stemming from different regions of the alignment. Figure 1.17 illustrates the effects of
recombination on the analysis of phylogenetic relationships among different HIV-1 strains. Both
figures demonstrate that the presence of mosaic sequences resulting from recombination can lead to
systematic errors in phylogenetic tree estimation. Their detection, therefore, is a crucial prerequisite
for consistently inferring the evolutionary history of a set of DNA/RNA sequences. Additionally,
the recent advent of multiple-resistant pathogens has led to an increased interest in interspecific
recombination as an important, and previously underestimated, source of genetic diversification in
bacteria and viruses. The discovery of a surprisingly high frequency of mosaic RNA sequences in
HIV-1 suggests that a substantial proportion of AIDS patients have been coinfected with HIV-1
strains belonging to different subtypes, and that recombination between these genomes can occur in
vivo to generate new biologically active viruses [116]. A phylogenetic analysis of the bacterial genera
Neisseria and Streptococcus has revealed that the introduction of blocks of DNA from penicillin-
resistant non-pathogenic strains into sensitive pathogenic strains has led to new strains that are
both pathogenic and resistant [92]. Thus the presence of interspecific recombination raises the
possibility that bacteria and viruses can acquire biologically important traits through the exchange
and transfer of genetic material.
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1.7 Traditional Methods for Detecting Recomination

Several methods for detecting interspecific recombination have been developed – following up on
the seminal paper by Maynard Smith [92] – and I have reviewed the classical approaches in [DH1],
Chapter 5. None of these methods is without shortcomings. While the reticulated structure of
phylogenetic networks [7, 136, 137] indicates the presence of recombination, it does not easily allow
the location and the changepoints of the recombinant regions in the DNA sequence alignment.
By discarding all but the polymorphic sites in the DNA sequence alignment and ignoring explicit
phylogenetic relationships, the method of maximum chi-square [92] does not make the most efficient
use of the information contained in the DNA sequence alignment and, consequently, detects the
location of recombinant regions at comparatively poor resolution. The method of Partial Likelihoods
Assessed Through Optimization (PLATO), proposed in [53], becomes increasingly unreliable as the
recombinant regions grow in length. The DSS statistic of TOPAL [93, 94] is computed from pairwise
distances between DNA sequences, which suffers from the intrinsic information loss discussed in
Section 1.2 and illustrated in Figure 1.5. Finally, methods based on maximum parsimony, following
up on Hein’s seminal RECPARS algorithm [63], are inflicted by the inconsistency problem described
in Section 1.3. They also depend on various tuning parameters, which cannot be inferred from the
data and, hence, have to be heuristically set by the user.

1.8 Methodological Improvements

In the next three chapters, I will review the methods for detecting recombination and mosaic
structures in DNA sequence alignments that I have developed and co-developed. These methods
are based on phylogenetic trees inferred from the DNA sequence alignment with the likelihood
paradigm. As opposed to the DSS statistic of TOPAL and the method of maximum chi-square,
they avoid any intrinsic loss of information from the data. As opposed to RECPARS, they avoid the
inconsistency problem inherent in maximum parsimony. As opposed to phylogenetic networks, they
allow the location of recombinant segments to be inferred. The more advanced models described
in Chapters 3 and 4 are based on Bayesian hierarchical models, which allow all parameters to be
consistently inferred from the data.
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Chapter 2

Detecting Recombination with a
Sliding Window Method

Summarizing my work in [DH11,DH17,DH21,DH22,DH29], this chapter describes a
graphical exploratory method based on moving a window along the DNA sequence
alignment and computing a divergence measure of a phylogenetic signal as a poten-
tial indicatior of evidence for recombination. The phylogenetic signal chosen is the
posterior distribution of phylogenetic tree topologies, which is based on the Bayesian
approach to phylogenetic inference, and which is practically computed by repeatedly
running Markov chain Monte Carlo (MCMC) simulations on different subsets of the
DNA sequence alignment [DH29]. This method can be refined with a topology based
pruning scheme [DH21] and the combination with a Bayesian hidden Markov model
[DH17]. The algorithms have been implemented in a user-friendly software package
[DH11,DH22].

2.1 Method A: Probabilistic Divergence Method (PDM)

This section reviews my work with Frank Wright, published in [DH29]. The idea of window-based
detection methods is to slide a window along the DNA sequence alignment and monitor changes in
the posterior distribution of the phylogenetic tree topology. An illustration of the concept is given
in Figures 2.1–2.3. For a formal introduction, consider a given alignment of DNA sequences, D,
from which we select a consecutive subset Dt of predefined width W , centred on the tth site of the
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Figure 2.1: Illustration of the probabilistic divergence method (PDM). The top right subfigure shows
a recombination scenario in a four-species tree similar to Figure 1.16. The top left subfigure shows the resulting
sequence alignment, where the tree topology in the centre block is different from the topology in the flanking regions
as a consequence of recombination. The subfigure in the bottom right shows the three possible tree topologies. The
bottom left subfigure shows the posterior distribution over tree topologies conditional on different subregions of the
alignment, selected by a moving window. When moving the window into a region that corresponds to a different tree
topology, the posterior distribution can be expected to change markedly.

alignment. Let S be an integer label for tree topologies, and define

PS(t) := P (S|Dt) =
∫ ∫

P (S,w,θ|Dt)dwdθ (2.1)

This is the marginal posterior distribution of tree topologies S, conditional on the “window” Dt,
which includes a marginalization over the branch lengths w (see Figure 1.13) and the parameters
of the nucleotide substitution model θ (e.g. in Figure 1.12 this refers to the transition-transversion
ratio α/β). In practice the integral in (2.1) is solved numerically by means of a Markov chain Monte
Carlo (MCMC) simulation, and can be carried out with standard Bayesian phylogenetic inference
programs, like BAMBE [80]. This MCMC simulation yields a sample of triples {Sti,wti,θti}Mi=1

simulated from the joint posterior distribution P (S,w,θ|Dt). We then replace the true posterior
distribution by the empirical distribution

P (S,w,θ|Dt) ≈ 1
M

M∑
i=1

δS,Stiδ(w −wti)δ(θ − θti) (2.2)
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Figure 2.2: Detecting recombination with the PDM method. The figure shows the posterior distribution
P (S|Dt) of tree topologies S conditional on two subsets Dt and Dt′ selected by a moving window. When the window
is moved into a recombinant region, the posterior distribution P (S|Dt) can be expected to change significantly, and
therefore to lead to a high PDM score.

where δS,Sti denotes the Kronecker delta symbol, and δ(.) is the delta function, which is equal to 1
if St = St−1 and 0 otherwise. Inserting (2.2) into (2.1) gives:

PS(t) =
1
M

M∑
i=1

δS,Sti =
MS(t)
M

(2.3)

where MS(t) denotes the number of times a tree has been found to have topology S.

The basic idea of the probabilistic divergence method (PDM) for detecting recombinant regions is to
move the window Dt along the alignment and to monitor the distribution PS(t). We would expect
a substantial change in the shape of this distribution as we move the window into a recombinant
region, as illustrated in Figures 2.1 and 2.2. The question, then, is how to easily monitor such a
change and how to estimate its significance. To this end we consider the Kullback-Leibler divergence
as the natural distance measure in probability space:

K(P,Q) =
∑
S

PS log
(
PS

QS

)
(2.4)

in which P and Q denote probability distributions. A standard result from information theory is
the non-negativity of the Kullback-Leibler divergence (see e.g. Chapter 2 in [DH1] and [104]), i.e.
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Figure 2.3: Global and local PDM. The figure shows the posterior distribution P (S|Dt) of tree topologies S
conditional on two subsets Dt and Dt′ selected by a moving window. The local PDM compares two distributions
conditional on adjacent windows. This measure is a local divergence score. Alternatively, one can first obtain a
reference distribution 〈P (S|Dt)〉 by averaging P (S|Dt) over all window positions, and then compute a global PDM
between 〈P (S|Dt)〉 and each local distribution P (S|Dt).

K(P,Q) is always non-negative, and zero if and only if P = Q. To estimate the divergence between
the local and the global distribution, define P as in (2.3) and Q as the average distribution:

d[P (t), P ] = K[P (t), P ]; PS =
1
Mw

Mw∑
t=1

PS(t) (2.5)

where Mw is the number of different window positions. This divergence score is the global PDM.
Since Support(P ) ⊆ Support(P ), where Support(P ) is the set of all topologies S for which PS 6= 0,
the non-singularity of the expression on the left-hand side of (2.5) is guaranteed. To determine
the divergence between two local distributions P (t) and P (t + ∆t) – conditional on two adjacent
windows with centre positions t and t+ ∆t – a slightly modified divergence measure1 is used:

d[P (t), P (t+ ∆t)] = (2.6)
1
2

[
K

(
P (t),

P (t) + P (t+ ∆t)
2

)
+K

(
P (t+ ∆t),

P (t) + P (t+ ∆t)
2

)]
Note again that Support[P (t)],Support[P (t + ∆t)] ⊆ Support

[
P (t)+P (t+∆t)

2

]
guarantees the non-

singularity of d[P (t), P (t+ ∆t)]. To estimate whether the observed divergence measures are signif-
icantly different from zero, we can use the fact that under the null hypothesis of no recombination,

1The divergence measure of (2.6) was introduced by Sibson; see, for instance, [78], Chapter 14.
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P = Q, the Kullback-Leibler divergence is asymptotically chi-squared distributed [66]. A bet-
ter yet computationally more expensive approach is based on parametric bootstrapping. First,
a phylogenetic tree is estimated from the whole sequence alignment under the assumption of no
recombination. Second, DNA sequence alignments without recombination are generated from this
tree. Third, the method is repeatedly applied to these alignments. In this way we obtain a dis-
tribution of PDM scores under the null hypothesis of no recombination, from which p-values and
significance indicators can be computed.

The local PDM (2.6) depends on the distance between two windows, ∆t. It seems natural to choose
two consecutive windows. However, by allowing a certain overlap between the windows the spatial
resolution of the detection method can be improved. In the empirical study described in [DH29] I
found that the best results can be obtained by averaging over different degrees of window overlap:

d =
1
A

A∑
a=1

d[P (t), P (t+ a∆t)] (2.7)

where d(.) is defined in (2.6), and the average is over all window overlaps between 50% and 90%.

I have assessed the performance of the PDM method on various synthetic and real-world DNA
sequence alignments subject to recombination; see [DH29] for details. A comparative evaluation
revealed that PDM detects recombinant regions with a higher accuracy than the traditional methods
reviewed in Section 1.7. In particular it improves on [93, 94] in three aspects. First, by using a
likelihood score, the information loss inherent in a score based on pairwise sequence distances, as
discussed in Section 1.2 and illustrated in Figure 1.5, is prevented. Second, a single optimized
reference tree is replaced by a distribution over trees, which captures the intrinsic uncertainty of
tree estimation from short sequence alignments. Third, the method focuses on topology changes
and thereby avoids the potentially confounding effect of rate heterogeneity, which I will discuss in
more detail in Chapter 4.

The method has been implemented in a user-friendly software package [DH22], and in a joint project
with Miles Armstrong, Mark Phillips and Vivian Bloks I have successfully applied it to the detection
of recombination in an alignment of mitochondrial DNA sequence from various populations of the
potato cyst nematode Globodera pallida [15].

2.2 Method B: Improvement by Pruning

In this section I summarize the work described in [DH21]. The principal shortcoming of the PDM
method is illustrated in Figure 2.4. A substantial change in the tree topology caused by a re-
combination event is not distinguished from changes in the clade configurations of closely related
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Figure 2.4: Shortcoming of the PDM method. A substantial change in the branching structure of a phylo-
genetic tree, illustrated on the left, is indicative of a recombination event. Changes of the branching structure that
only involve closely related strains, shown on the right, may result as a mere consequence of statistical fluctuations.
The PDM method described in the previous section does not distinguish between these two types of changes in the
tree topology, which renders the approach suboptimal.
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Figure 2.5: RF-distance based pruning. Left panel: The Robinson-Foulds (RF) distance between tree topologies
is defined as the minimum number of contraction and decontraction operations needed to transform one topology
into the other. Right panel: On the average posterior distribution of tree topologies, averaged over all sliding window
positions, a cutoff threshold is defined. Tree topologies above this threshold are kept as “principal topologies”. Tree
topologies below the threshold are assigned to the principal topology with the minimum RF distance. After this
re-assignment, the posterior distribution is re-normalized.

taxa. As the number of sequences in the alignment increases, so does the number of such within-
clade reconfigurations. This is because for an increased number of taxa the posterior distribution
over tree topologies, P (S|Dt), becomes increasingly disperse unless the size of the data set Dt is
increased. An increased amount of data Dt, however, corresponds to an increased length of the
sliding window, which compromises the spatial resolution of the detection and is not an option for
short alignments.

A simple pruning scheme
A possible remedy for this “dispersion” problem is to include information on the amount of change
between different tree topologies and thereby distinguish between the scenarios depicted in Fig-
ure 2.4. Since branch lengths have been marginalized over to avoid the confounding effect from
rate heterogeneity2, the difference has to be estimated solely on the basis of topological information.
A possible metric in the space of tree topologies was introduced in [117]. The idea is illustrated in
Figure 2.5. Consider the two complimentary operations of merging two existing nodes into one, and

2Rate heterogeneity will be discussed in Section 4.
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all pairs of tree topologies.

Using the pairwise Robinson-Foulds distances from the previous step,

Cut the dendogram at a height that results in a pre-defined number of clusters.

a replacement of topology strings in the MCMC trajectories by class labels.

Effectively this impliesAssign each tree topology to its respective cluster.

For each window position:

Compute the distribution of clusters.

Move along the DNA sequence alignment with stepsize . For each position:

Compute the divergence between the distributions over clusters

obtained from adjacent (and possibly overlapping) windows.

where each window selects W consecutive

cluster the topologies, using, for instance, agglomerative average linkage clustering.

stepsize over the

For each window position:

Compute the Robinson-Foulds distance between 

∆ t

∆ tMove a window of pre-defined width W with pre-defined

columns of the alignment.

DNA sequence alignment,

Run an MCMC simulation to obtain a sample of trees.

Save the corresponding tree topologies.

Figure 2.6: Pseudo code of the pruning by clustering algorithm. The figure summarizes the various steps
involved in the computation of the pruned probabilistic divergence signal.

splitting an existing node into two. The Robinson-Foulds (RF) distance between tree topologies
S1 and S2 is defined as the minimum number of operations required to transform S1 into S2 (or
S2 into S1). Robinson and Foulds [117] derived a simple algorithm for the practical computation,
which has been implemented in various phylogeny software packages, like PHYLIP [42]. Define
〈P (S|D)〉 to denote the average posterior distribution of tree topologies, averaged over all sliding
window positions:

〈P (S|D)〉 =
1
NW

NW∑
t=1

P (S|Dt) (2.8)

in which NW denotes the total number of window positions. The support of the average posterior
distribution is the set of those tree topologies for which 〈P (S|D)〉 6= 0, that is, the set of all tree
topologies visited during the MCMC simulations. In an application of the PDM method to a
DNA sequence alignment of ten strains of Hepatitis-B virus, I found a support of 126 distinct tree
topologies. Usually, we do not expect to find over hundred recombination events in an alignment of
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about 3000 nucleotides. Hence most of topology changes correspond to within-clade reconfigurations
resulting from diffuse posterior distributions, which degrades the reliability and efficacy of the PDM
method.

A way to proceed is to reduce the dispersion of the posterior distribution by reducing the cardinality
of the support of 〈P (S|D)〉. This can be effected with a pruning scheme based on the RF distance.
First, identify a set of principal tree topologies, for instance, those that maximize 〈P (S|D)〉. Next,
assign each non-principal tree topology to the principal topology with the minimum RF distance.
Finally, renormalize the posterior distributions P (S|Dt) and recompute the PDM signal. An il-
lustration is given in Figure 2.5. The reduction in the dispersion of P (S|Dt) is likely to reduce
the noise in the PDM signal. Note that similar pruning methods are used in machine learning
to improve the generalization performance of a predictor [13]. Also note that the pruning of the
support of 〈P (S|D)〉 has some similarity with a Bayesian approach in that it brings the data-based
prediction in line with our prior assumption about the expected number of recombination events.

Improved pruning by clustering
The pruning scheme described in the previous subsection has an obvious disadvantage: when the
recombinant region is short, the set of principal topologies may not contain any topology that
reflects the recombination event. Also, the assignment of non-principal to principal topologies can
be interpreted as the first step of an incomplete K-means clustering procedure. Such topology-based
clustering of phylogenetic trees was proposed in [135] to reduce the information loss incurred by a
single consensus tree approach. It here offers the obvious method to be used for pruning. Based
on the RF distance, the MCMC sample of tree topologies, {S1, . . . , SM}, is clustered. For a given
number of clusters K, tree topologies are assigned to their respective cluster C1, . . . , CK :

I(Si ∈ Ck) =

[
1 if Si ∈ Ck
0 if Si ∈\ Ck

(2.9)

Now, define the posterior distribution over clusters,

P (Ck|Dt) =
∑
S

I(S ∈ Ck)P (S|Dt) (2.10)

which is computed from the MCMC sample of tree topologies, {S1, . . . , SM}:

P (Ck|Dt) =
1
M

M∑
i=1

I(Si ∈ Ck) (2.11)

An improved pruning scheme can be achieved by using the posterior distribution over classes
(2.11) instead of the original posterior distribution over topologies (2.3) in the computation of the
divergence measure D(t) in (2.6). I will henceforth refer to this novel approach of computing D(t)
from P (Ck|Dt) rather than P (S|Dt) as the pruned PDM method.
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Note that while this method addresses the shortcomings of the original PDM method and the simple
pruning scheme of Figure 2.5, it is still heuristic in that the choice of the clustering algorithm
is arbitrary. Our work in [DH17] is based on the findings in [135]. When applying MCMC to
sample trees from the posterior distribution, as described in [80], one is faced with the problem of
summarizing the information contained in the MCMC sample succinctly. A widely applied method
is to resolve the conflicts within the obtained sample of tree topologies by computing a consensus
tree, which, however, may incur a substantial information loss. Stockham et al. [135] investigated
a post-processing alternative, by which trees are first divided into subsets with some clustering
algorithm based on the RF distance, and each cluster is then characterized by its own consensus
tree. The authors assessed various clustering algorithms with different measures of information loss.
They found that bottom-up average linkage clustering outperformed top-down K-means clustering
and the method of phylogenetic islands [89] in terms of complexity versus information content, and
we therefore used the former scheme in our work [DH21].

The pruning-by-clustering procedure we proposed in [DH21] thus works as follows. First, generate
an exhaustive list of all distinct tree topologies sampled in the complete set of MCMC simulations,
that is, the MCMC simulations carried out for all window positions. Next, compute all pairwise
RF distances between topologies, and infer a dendrogram of topologies with agglomerative average
linkage clustering from these distances. Cut this dendrogram at a certain height such that it disin-
tegrates into a pre-defined number of clusters. Finally, assign each tree topology to its respective
cluster and use this assignment to compute the posterior distribution over clusters by application
of (2.10). This posterior distribution over clusters supersedes the original posterior distribution
over topologies in the computation of the divergence measure (2.6). A summary of the proposed
algorithm is given in Figure 2.6.

Findings
Figure 2.7 illustrates the effect of the pruning scheme. I simulated two recombination events along
with a differently diverged region (which has a confounding effect, see Chapter 4) in a synthetic
DNA sequence alignment of 8 taxa with 6000 nucleotides each. There are four recombination
changepoints, delimiting two recombinant regions of length 500 nucleotides. When applying the
unpruned PDM method discussed in the previous section, decreasing the window size deteriorates
the detection accuracy: the posterior distribution over tree topologies becomes more diffuse, leading
to a more erratic PDM signal and the identification of spurious changepoints. This problem is
avoided with the proposed pruning scheme, which in combination with the decreased window size
results in an improved spatial resolution. Details of the simulations as well as a discussion of several
other comparative evaluations on both synthetic and real DNA sequence alignments can be found
in [DH21].

The method has been implemented in a user-friendly software package [DH11].
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Figure 2.7: Detection of recombination in a synthetic DNA sequence alignment with the pruned
PDM method. The graphs show probabilistic divergence signals using a window size of 500 (top panels) and 200
(bottom panels) nucleotides. The dashed horizontal lines show the 99 percentiles under the null hypothesis of no
recombination. From left to right: no pruning (resulting in 50 tree topologies when the window size is 500, and 406
topologies for a window size of 200), pruning down to 7, 5, and 3 clusters. The true mosaic structure of the sequence
alignment is as follows. Ancient recombination event: sites 1000–1500; recent recombination event: sites 2500–3000;
differently diverged region: sites 4000–4500. Note that the latter has a confounding effect, and should be avoided by
successful detection methods.

2.3 Method C: Combination with Hidden Markov Models
(HMMs)

This section reviews my work with Anna Kedzierska [DH17], which aimed at combining the window-
based detection methods from the previous sections with hidden Markov models (HMMs). HMMs
provide a powerful tool widely used in bioinformatics [6], and they have been successfully applied
to the segmentation of DNA sequences [19]. Here, the objective is to locate homogeneous segments
that are compositionally different from the rest of the sequence. The hidden states represent the
homogeneous segments to be detected, which are characterized by their distribution of nucleotides,
or by their first-order Markovian transition probabilities between nucleotides [19]. A critical ques-
tion is to infer how many different segment types a DNA sequence is composed of. To this end,
Boys et al. [17, 18] adopted a Bayesian approach and sampled the number of hidden states from the
respective posterior distribution with reversible jump (RJ) Markov chain Monte Carlo (MCMC).

The problem of detecting recombination is related to the segmentation problem described above,
but differs from it in two important aspects. First, the data to be segmented is not a single DNA
sequence, but an alignment of several DNA sequences. Second, homogeneity in a segment is not
defined with respect to the nucleotide composition, but with respect to the underlying phylogenetic
tree topology. A possible approach, proposed in the next chapter, is to associate the hidden
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states with individual tree topologies. However, the number of tree topologies increases super-
exponentially with the number of sequences in the alignment, and this method is therefore restricted
to small numbers of taxa. The method we proposed in [DH17] is based on the idea of combining an
HMM with the window-based detection method of the previous sections, Sections 2.1 and 2.2. First,
we cut the DNA sequence alignment into segments of fixed length. For each of these segments, we
sample phylogenetic trees from the posterior distribution – conditional on the respective segment –
with MCMC. Second, we apply a clustering algorithm based on an appropriate distance metric in
tree topology space, as described in the previous section, and we convert the posterior distributions
over tree topologies into posterior distributions over clusters. Third, we associate a position in the
alignment with the corresponding segment centre and characterize it by the respective posterior
distribution over topology clusters. These posterior distributions summarize the information in
the DNA sequence alignment and correspond to the observation of individual nucleotides in a
single DNA sequence. Fourth, we apply a Bayesian hidden Markov model. We infer the optimal
number of homogeneous segments, that is, the optimal number of hidden states, with RJMCMC,
as in [17, 18]. For the actual location of the recombination changepoints, we compute the marginal
posterior distributions over the hidden states, where state transitions indicate changepoints between
putative mosaic segments in the DNA sequence alignment. An illustration of the scheme is given
in Figure 2.8, and a pseudo code description of the algorithm is available from Figure 2.9.

Hence, our method described in [DH17] is effectively a combination of various modelling and infer-
ence schemes: the Bayesian approach to phylogenetics with MCMC [80], the probabilistic divergence
measures introduced in [DH21,DH29] and described in Sections 2.1 and 2.2, the clustering of tree
topologies [135] based on an appropriate distance metric [117], the segmentation of DNA sequences
with HMMs [19], and the Bayesian approach to inference in HMMs with RJMCMC [17, 18, 115].

Our method is, in essence, a modification of the method described in the previous section. It uti-
lizes, in fact, the same pre-processing scheme: First, we run several MCMC simulations on relatively
short DNA sequence alignment segments. Next, we condense the complexity of the resulting topol-
ogy space with a clustering method based on a topological distance measure. The main difference
between the method described here and the one from Section 2.2 consists in the way the resulting
position-dependent posterior distributions over topology clusters are exploited. The approach in
[DH21], described in the previous section, consists in computing a probabilistic divergence measure,
where ‘significantly large’ peaks indicate putative recombination changepoints. The difficulty, then,
is to decide when a peak can be classified as ‘significantly large’. This question can be decided from
the distribution of peak heights under the null hypothesis of no recombination. This distribution
can, in principle, be computed with a bootstrapping scheme. However, bootstrapping requires us
to re-run the phylogenetic pre-processing step on hundreds of bootstrap replicas. This leads to very
high computational costs, as we have to run new MCMC simulations on each bootstrap replica.
Alternatively, one could resort to asymptotic and approximate methods; however, this inevitably
compromises the estimation accuracy. The method described in the present section addresses the
problem of identifying significant mosaic segments by formulating it as a model selection problem
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Figure 2.8: Illustration of the combination with HMMs. Left: A sliding window is moved along the DNA
sequence alignment, which may contain a recombinant region (shown in the centre). For each window position, we
obtain a distribution of tree topologies with MCMC. This distribution over tree topologies can be converted into a
distribution over topology clusters, as in Figure 2.6. Right: The distributions thus obtained form the emission prob-
abilities of a hidden Markov model (HMM). The hidden states of the HMM represent homogeneous segments of the
DNA sequence alignment. Model order and parameters of the HMM are inferred in a Bayesian sense with RJMCMC.
In the present example, we would expect to find two distinct hidden states corresponding to the recombinant region
and the flanking regions in the DNA sequence alignment.

in Bayesian HMMs. This is closely related to the DNA sequence segmentation with HMMs [19],
where each hidden state represents a homogeneous DNA segment with a characteristic distribu-
tion over nucleotides, and the true number of homogeneous DNA segments has to be determined.
Boys et al. [17, 18] address this problem by turning the number of hidden states into a random
variable and sampling it (together with the other parameters) from the posterior distribution with
RJMCMC. We basically apply the same approach. The difference is that our emission probabilities
are not distributions over individual nucleotides, but over clusters of tree topologies; the latter
have been obtained in the pre-processing step described in Section 2.2. The posterior distributions
estimated with the proposed inference scheme do not only indicate the maximum a posteriori num-
ber of different homogeneous regions and their locations, but also indicate the uncertainty in the
prediction.
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For each window position:

Run an MCMC simulation to obtain a sample of trees from the posterior distribution

conditional on the selected window. Save the corresponding tree topologies.

Define a pre-defined number of clusters K and choose a clustering algorithm.

assign each tree topology to its respective cluster.cluster the topologies, that is, 

Using the pairwise Robinson-Foulds distances from the previous step,

For each window position:

represent homogeneous segments in the DNA sequence alignment.

posterior distributions computed in the previous step, and hidden states

Apply an HMM, in which the observations are given by the position-dependent

Compute the distribution over clusters.

Sample the number of hidden states from the posterior distribution with RJMCMC.

of the site-dependent hidden states to predict putative recombinant breakpoints.

Bayesian inference of the model complexity:

From these state sequences compute the marginal posterior distributions
Gibbs sampling of hidden state sequences from the posterior distribution.
Bayesian inference of the mosaic structure of the DNA sequence alignment:

over the∆ tMove a window of pre-defined width W with pre-defined

columns of the alignment.

DNA sequence alignment,

Compute the Robinson-Foulds distance between all pairs of tree topologies.

where each window selects W consecutive

stepsize

Figure 2.9: Pseudo code of the combination with HMMs. The figure summarizes the various steps involved
in combining the pruned PDM measure with Bayesian HMMs.

Findings
We discussed the results obtained on various synthetic and real-world DNA sequence alignments in
[DH17]. On synthetic DNA sequence alignment, the method correctly predicted the number as well
as the location of the recombinant regions, and the predictions were robust with respect to changes
in the prior distribution and the pre-processing scheme. In addition, the method succeeded in clearly
distinguishing between recombination and rate variation3. On real DNA sequence alignments from
maize actin genes, Hepatitis-B virus and HIV-1 the results showed some variation with respect to
changes in the prior distribution and the pre-processing parameters. However, the results reported
in the literature show the same variation, in response to employing different detection methods, or
using different parameters of the same detection method. The differences between the predicted
changepoints in our study were rather minor, and for each set of predicted changepoints we could
find some method in the literature that supported these predictions. In summary, the results of
our simulation studies suggested that the inference scheme either identified the correct number

3To be discussed in Chapter 4.
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and location of the recombinant regions, or made predictions that were consistent with the results
reported in the literature. This suggests that the proposed method is relatively robust and offers a
viable exploration scheme for finding evidence of recombination in DNA sequence alignments.

2.4 Discussion

Although the individual simulations for different windows are based on rigorous Bayesian phylo-
genetic modelling, the overall scheme depends on various heuristic parameters: the window size,
the number of clusters in the pruning scheme, and (for the combination with Bayesian HMMs)
the prior distribution on the number of segments. Hence, window-based methods provide a tool
for exploratory data analysis and hypothesis generation, rather than validation. By varying the
prior distribution and the pre-processing parameters, we can control the resolution and the degree
of conservatism of the proposed detection method. The time-consuming step appears to be the
repeated run of MCMC simulations on different subsets of the alignment (windows). However,
these simulations can be run in parallel, and the methods are therefore ideally suited for modern
high-performance computer clusters. This substantially reduces the computing times over the more
accurate models that will be discussed in the next two chapters.
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Chapter 3

Detecting Recombination with
Phylogenetic Hidden Markov Models

This chapter summarizes my work in [DH15,DH25,DH26,DH28] and describes an ap-
proach based on phylogenetic HMMs. The method draws on the observation that
interspecific recombination usually leads to a change of the underlying phylogenetic
tree topology. The idea is to introduce a hidden state that represents the tree topol-
ogy at a given site. A state transition from one topology into another corresponds to
a recombination event. To introduce correlations between adjacent sites, the hidden
states are given a Markovian dependence structure. Thus, the standard model of a
phylogenetic tree is generalized by the combination of two probabilistic models: a
taxon graph (phylogenetic tree) representing the relationships among the taxa, and
a site graph (HMM) representing dependencies between different sites in the DNA
sequence alignments. Changepoints of mosaic segments in the alignment are predicted
by state transitions in the site graph. While this method can only deal with a small
number of sequences simultaneously, it has the potential to predict the locations and
changepoints of recombinant regions more accurately than what can be achieved with
most existing techniques.

3.1 Introduction

Phylogenetic hidden Markov models (HMMs) are motivated by the older approach of RECPARS
[63], which is based on maximum parsimony (see Section 1.3) and was briefly mentioned in Sec-
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Figure 3.1: Modelling recombination with hidden Markov models. Positions in the model, labelled
by the subscript t, correspond to sites in the DNA sequence alignment. Black nodes represent observed random
variables; these are the columns in the DNA sequence alignment. White nodes represent hidden states; these are
the different tree topologies, shown (for four sequences) in Figure 3.2. Arrows represent conditional dependencies.
Squares represent parameters of the model. The probability of observing a column vector yt at position t in the
DNA sequence alignment depends on the tree topology St, the vector of branch lengths w, and the parameters of
the nucleotide substitution model θ. The tree topology at position t depends on the topologies at the adjacent sites,
St−1 and St+1, and the recombination parameter ν. Left: In the maximum likelihood approach, ν, w, and θ are
parameters that have to be estimated. Right: In the Bayesian approach, ν, w, and θ are random variables. The prior
distribution for ν is a beta distribution with hyperparameters α and β. The prior distributions for the remaining
parameters depend on some hyperparameters, generically denoted by Ω. The parameters ν, w, and θ are sampled
from the posterior distribution with Markov chain Monte Carlo (MCMC).

tion 1.7. Phylogenetic HMMs are based on the probabilistic framework described in Section 1.4 and
thereby overcome the two fundamental shortcomings of RECPARS. Firstly, they avoid the problem
of inconsistency that is inherent in maximum parsimony; see Section 1.3. Secondly, as opposed to
methods based on maximum parsimony, they allow all parameters to be consistently inferred from
the data. I have provided a detailed comparison between these two approaches in [DH28].

The essential concept of phylogenetic HMMs is illustrated in Figures 3.1-3.2. The left panel of
Figure 3.1 depicts the structure of the model as a probabilistic graphical model. White nodes
represent hidden states, St, which have direct interactions only with the states at adjacent sites, St−1

and St+1. Black nodes represent columns in the DNA sequence alignment, yt. The squares represent
the model parameters, which are the branch lengths of the phylogenetic trees, w, the parameters
of the nucleotide substitution model, θ, and the recombination parameter, ν; see Figures 3.2 and
3.3. The joint probability of the DNA sequence alignment, D = (y1, . . . ,yN ), and the sequence of
hidden states,1 S = (S1, . . . , SN ), factorizes, by the standard expansion rule for Bayesian networks

1Note the difference between S (a state sequence) and S or St (an individual hidden state), as explained in the
previous footnote.
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Figure 3.2: Probabilistic approach to phylogenetics and modelling recombination. For a given column
yt in the sequence alignment, a probability P (yt|St,w, θ) can be computed, which depends on the tree topology
St, the vector of branch lengths w, and the parameters of the nucleotide substitution model θ. In the presence of
recombination, the tree topology can change and thus becomes a random variable that depends on the site label t.
For four taxa, there are three different tree topologies. The vectors w and θ are accumulated vectors, as defined in
the paragraph above equation (3.3).

(see e.g. Chapter 2 in [DH1]):

P (D,S|w,θ, ν) = P (y1, . . . ,yN , S1, . . . , SN |w,θ, ν)

= P (S1)
N∏

t=1

P (yt|St,w,θ)
N∏

t=2

P (St|St−1, ν) (3.1)

P (S1) is the marginal distribution over the hidden states, that is, the K possible tree topologies.
The P (St|St−1, ν) are the transition probabilities, which depend on the recombination parameter
ν ∈ [0, 1], as illustrated in Figure 3.3. The functional form chosen in [DH25,DH26] is given by

P (St|St−1, νS) = νδ(St,St−1)

(
1− ν
K − 1

)[1−δ(St,St−1)]

(3.2)

where δ(St, St−1) denotes the Kronecker delta symbol. The parameter ν defines the probability
that on moving from a site in the DNA sequence alignment to an adjacent site, no topology change
occurs. If a topology change occurs – corresponding to a recombination event – all transitions into
other topologies are assumed to be equally likely. The P (yt|St,w,θ) are the emission probabilities,
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Figure 3.3: Transition probabilities. The hidden states of the HMM represent different tree topologies, and
state transitions correspond to recombination events. The transition probability ν is the probability that on moving
from a site in the DNA sequence alignment to an adjacent site, no topology change occurs. If a topology change
occurs, we assume that, a priori, all transitions are equally likely.

which depend on the vector of branch lengths, w, and the parameters of the nucleotide substitution
model, θ. For example, for the Kimura model illustrated in Figures 1.10 and 1.12 , θ is given by
the transition-transversion ratio. For the HKY85 model, mentioned in Section 1.4, , θ is a vector
containing the transition-transversion ratio and the equilibrium probabilities of the nucleotides.2

The computation of P (yt|St,w,θ) was discussed in Section 1.4. Note that while the standard
likelihood approach to phylogenetics, discussed in Chapter 1, assumes that one tree topology S
applies to the whole sequence alignment, equation (3.1) allows for topology changes, corresponding
to recombination events. The best prediction of the recombinant regions and their changepoints is
given by

Ŝ = argmaxSP (S|D,w,θ, ν)
= argmaxS1,...,SN

P (S1, . . . , SN |y1, . . . ,yN ,w,θ, ν) (3.3)

which is computed with the Viterbi algorithm for HMMs [109]. The marginal probability P (S1)
and the parameters w, θ, and ν need to be estimated.

2In fact, both w and θ are dependent on the hidden state, so more precisely, the emission probabilities should
be written as P (yt|St,wSt , θSt). To avoid clutter in the notation, I prefer to use the accumulated vectors w =
(w1, . . . ,wK) and θ = (θ1, . . . , θK) and define: P (yt|St,wSt , θSt) = P (yt|St,w, θ). This means that St indicates
which subvectors of w and θ apply.
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3.2 Maximum Likelihood

The application of phylogenetic HMMs to the detection of recombination was not my idea; in
fact, the approach was first proposed in [95]. However, the authors did not find a satisfactory
solution to the inference problem. In fact, they described the problem as a “chicken and egg”
paradox, as illustrated in Figure 3.4. In order to infer the parameters of the recombinant and
dominant phylogenetic trees, most notably their branch lengths w, one needs to know where the
recombinant regions are. However, it is the absence of this knowledge that motivates the application
of the phylogenetic HMM in the first place. Inferring the branch lengths for each tree from the
whole DNA sequence alignment is methodologically inconsistent, as illustrated in the left panel
of Figure 3.4: the estimation of the branch lengths of the recombinant tree, corresponding to the
centre segment of the sequence alignment, would be dominated by the flanking non-recombinant
regions, which should actually be excluded. Conversely, the estimation of the branch lengths of
the dominant tree, corresponding to the flanking regions of the alignment, would be distorted by
the presence of the recombinant region. The authors addressed this issue by incorporating into the
estimation procedure a window-based technique of the type discussed in the previous chapter, but
this approach is heuristic and suboptimal. My contribution in [DH28] was to demonstrate that
all parameters can be inferred consistently in a maximum likelihood sense with the expectation
maximization (EM) algorithm first proposed in [33]. A complete description of this approach can
be found in [DH28]. In a nutshell, the algorithm works as follows. In the maximization step
(M-step), the branch lengths and nucleotide substitution parameters are optimized by maximizing

A(w,θ) =
N∑

t=1

∑
St

Q(St) logP (yt|St,w,θ) (3.4)

where Q(St) is a site-dependent probability distribution over the states St to be discussed shortly.
The optimization problem is NP-hard. However, standard greedy search routines used in likelihood-
based phylogenetic inference can be applied here. In fact, any maximum likelihood phylogenetic
inference package can be used, like DNAML in PHYLIP [42].3 The only modification required is
a state-dependent weighting of the sites in the DNA sequence alignment with the factor Q(St), as
illustrated in Figure 3.4. The factors Q(St) are estimated in the expectation step (E-step) of the
algorithm, using the forward–backward algorithm for HMMs [109]. The cycles of E and M steps have
to be iterated and are guaranteed to converge to a stationary (i.e. zero gradient) configuration of
the likelihood. This is usually a local maximum, and the algorithm is hence run repeatedly, starting
from different initializations. There are analogous M-steps for the marginal probabilities P (St) and
the recombination parameter ν, and the complete mathematical description of the algorithm can
be found in [DH28].

The maximum likelihood approach has the disadvantage that the optimal sequence of hidden states,
Ŝ, given by (3.3), depends on the parameters w, θ. These parameters were estimated from the

3Available from http://evolution.genetics.washington.edu/phylip/.
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Figure 3.4: Nucleotide weighting schemes. The bottom of each figure represents a multiple DNA sequence
alignment with a recombinant zone in the central segment. The left panel shows the standard method of phylogenetic
inference. The tree parameters are estimated from the whole sequence alignment, which corresponds to a uniform
weight of 1 for all sites. The right panel illustrates the EM algorithm. The solid line shows the site-dependent weights
Q(St = TR) for the recombinant topology TR, the dashed line represents the weights for the non-recombinant topology
T0 : Q(St = T0). Note that the weights Q(St) are updated automatically in every iteration of the optimization
procedure (in the E-step of the EM algorithm).

sequence alignment, which renders the approach susceptible to overfitting. Within the frequentist
paradigm of inference, we have to test the null hypothesis of no recombination against the alter-
native hypothesis that a recombination event has occurred. For the practical implementation, we
can use nonparametric or parametric bootstrapping, as described in [DH28]. These approaches are
computationally expensive, though, because they require us to repeat the iterative optimization
procedure of the EM algorithm on many (typically a hundred) bootstrap replicas of the sequence
alignment; see Figure 1.15. An alternative would be to resort to asymptotic model selection scores,
like the likelihood ratio test [66] or the BIC score [128]. However, for complex models and com-
paratively small data sets, these scores cannot be assumed to be reliable, and their use is not
recommended. Motivated by Figure 1.15, I have therefore switched to a Bayesian approach, as
described in the following section.

3.3 Bayesian Approach

Within the Bayesian framework, motivated in Section 1.5, the prediction of the optimal state
sequence S should be based on the posterior distribution P (S|D), which requires the remaining
parameters to be integrated out:

P (S|D) =
∫
P (S,w,θ, ν|D)dwdθdν (3.5)

In principle this avoids the overfitting scenario mentioned above and removes the need for a separate
hypothesis test. The difficulty, however, is that the integral in (3.5) is analytically intractable and
needs to be numerically approximated with Markov chain Monte Carlo (MCMC). A complete
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description of this scheme can be found in [DH25,DH26]. Below, I shall briefly discuss the choice
of prior distribution and the implementation of the MCMC method.

Prior distributions
Inherent in the Bayesian framework is the choice of prior distributions for all model parameters,
as illustrated in Figure 3.1, right. The approach in [DH25,DH26] makes the common assumption
of parameter independence [60], P (ν,w,θ) = P (ν)P (w)P (θ). Thus, with (3.1), we obtain for the
joint distribution:

P (D,S,w,θ, ν) = P (S1)P (w)P (θ)P (ν)
N∏

t=1

P (yt|St,w,θ)
N∏

t=2

P (St|St−1, ν) (3.6)

Due to the absence of specific biological knowledge about the nature of recombination processes, the
prior distributions are chosen rather vague. Also, prior distributions are chosen either conjugate,
where possible, or uniform, but proper (that is, restricted to a finite interval). The conjugate prior
for the recombination parameter ν is a beta distribution

B(ν) =
Γ(α+ β)
Γ(α)Γ(β)

να−1(1− ν)β−1 (3.7)

whose shape is determined by two hyperparameters α and β. For α = β = 1, the distribution in
(3.7) is the uniform distribution over the unit interval. It is straightforward to set α and β so as
to incorporate prior knowledge about the global frequency of recombination events. A priori, the
branch lengths w are assumed to be uniformly distributed in the interval [0, 1].4 In [DH25,DH26],
the prior on S1 was chosen uniform. A more general approach is to treat P (S1) itself as a parameter
vector and assign it a conjugate Dirichlet prior. Finally, the prior on θ depends on the nucleotide
substitution model and is discussed in [DH25,DH26].

The MCMC scheme
Ultimately, we are interested in the marginal posterior distribution of the state St at a given site t
in the alignment:

P (St|D) =
∑
S1

. . .
∑
St−1

∑
St+1

. . .
∑
SN

∫
P (S,w,θ, ν|D)dwdθdν (3.8)

This requires a marginalization over the model parameters and the states at the other sites. The
numerical approximation is to sample from the joint posterior distribution

P (S,w,θ, ν|D) (3.9)
4Fixing an upper bound on the branch lengths is necessary to avoid the use of an improper prior, for which the

MCMC scheme might not converge. Since for real DNA sequence alignments branch lengths are unlikely to approach
values as large as 1, this restriction should not cause any difficulties.
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and then to proceed as discussed in Section 2.1 and discard the model parameters and the states
at the other sites. Sampling from the joint posterior distribution follows a Gibbs sampling scheme
[25]. Applied to (3.9), this method samples each parameter group separately conditional on the
others. So if the superscript (i) denotes the ith sample of the Markov chain, we obtain the (i+1)th
sample as follows:

S(i+1) ∼ P (·|w(i),θ(i), ν(i),D) (3.10)
w(i+1) ∼ P (·|S(i+1),θ(i), ν(i),D) (3.11)
θ(i+1) ∼ P (·|S(i+1),w(i+1), ν(i),D) (3.12)
ν(i+1) ∼ P (·|S(i+1),w(i+1),θ(i+1),D) (3.13)

The order of these sampling steps, which will be discussed in the remainder of this subsection, is
arbitrary.

The posterior distribution of the recombination parameter ν can be shown to depend on the state
sequences S via the sufficient statistics Ψ =

∑N−1
t=1 δSt,St+1 and is given by

P (ν|D,S,w,θ) = B(ν|Ψ + α,N −Ψ + β − 1) (3.14)

where B is the beta distribution (3.7), from which sampling is straightforward [121].

For sampling the state sequences S, the approach pursued in [DH25,DH26] is a Gibbs-within-
Gibbs scheme, where each state St is sampled separately conditional on the others. Conditional
independence relations in HMMs are exploited to simplify the computations:

P (St|S1, . . . , St−1, St+1, . . . , SN ,D,w,θ, ν) = P (St|St−1, St+1,yt,w,θ, ν) (3.15)
∝ P (St+1|St, ν)P (St|St−1, ν)P (yt|St,w,θ)

where P (St|St−1, ν) and P (St+1|St, ν) are given by (3.2). Note that the last expression in (3.15) is
easily normalized to give a proper probability distribution, from which sampling is straightforward
(since St ∈ {1, . . . ,K} is discrete). This approach of Gibbs-within-Gibbs sampling was also used
in [114]. However, I later learned that mixing and convergence of the Markov chains can be
substantially improved by adopting a dynamic programming scheme, which I call the stochastic
forward-backward algorithm. I relegate the description of this scheme to the appendix at the end of
this chapter (Section 3.6). The stochastic forward-backward algorithm is effectively a combination
of the forward algorithm in HMMs [109] with a backward sampling procedure. It can also be
regarded as a modified Viterbi algorithm [109], in which the backtracking optimization routine is
replaced by a backtracking sampling routine. As opposed to [114], Boys et al. [19] had conjectured
that its mixing and convergence properties should be superior to the Gibbs-within-Gibbs scheme
of (3.15), which we empirically confirmed in [DH52].

Finally, the remaining parameters, w and θ, are sampled with the Metropolis–Hastings algorithm,
as described in [DH25,DH26]. The overall procedure is thus of the form of a Metropolis–Hastings–
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Figure 3.5: Different phylogenetic tree topologies for four strains of Neisseria. Zhou and Spratt [157] in-
vestigated the 787-nucleotide argF gene sequence alignment of four Neisseria strains: (1) N.gonorrhoeae (X64860), (2)
N.meningitidis (X64866), (3) N.cinerea (X64869), and (4) N.mucosa (X64873); GenBank/EMBL accession numbers
are given in brackets. The figure shows the three possible phylogenetic tree topologies.

within–Gibbs scheme. The algorithm has been implemented in a publicly available software package
[DH11,DH22].

3.4 Findings

From the many applications and comparative evaluations presented in [DH25,DH26,DH28], I pick
a particular interesting one for illustration purposes. One of the first indications for interspecific
recombination was found in the bacterial genus Neisseria [92]. Zhou and Spratt [157] investigated
the 787-nucleotide argF gene sequence alignment of four strains, shown in Figure 3.5. In the main
part of the alignment, N.meningitidis is grouped with N.gonorrhoeae, corresponding to topology
St = 1 in Figure 3.5. However, Zhou and Spratt [157] found two anomalous regions in the DNA
alignment. Between positions t = 1 and 202, they found a phylogenetic tree with a different
topology, corresponding to topology St = 3 in Figure 3.5. They also found a more diverged region
with the same topology, topology St = 1 in Figure 3.5, between positions t = 507− and 538. The
situation is illustrated in Figure 3.6.

The bottom panels of Figure 3.6 show the prediction of P (St|D), where the subfigure in the bottom
left was obtained with the maximum likelihood HMM method of Section 3.2, henceforth called
HMM-ML, and the subfigure in the bottom right with the Bayesian HMM method of Section 3.3,
henceforth referred to as HMM-Bayes. Both methods agree in predicting a sharp transition from
topology St = 3 to St = 1 at changepoint t = 202, which is in agreement with the findings in [157].
Both methods also agree in predicting a short recombinant region of the same topology change at
the end of the alignment. This region was not reported in [157]. Since it is very short – only about
20 nucleotides long – it may not be detectable by other, less accurate methods.

Differences between the predictions of HMM-ML and HMM-Bayes are found in the middle of the
alignment, where two further changepoints occur at sites t = 506 and t = 537. This is in agreement
with [157]. However, while Zhou and Spratt [157] suggested that the region between t = 506 and
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Figure 3.6: Recombination in Neisseria. Top: According to Zhou and Spratt [157], a recombination event
corresponding to a transition from topology 1 to topology 3, as defined in Figure 3.5, has affected the first 202
nucleotides of the DNA sequence alignment of four strains of Neisseria. A second more diverged segment seems to be
the result of rate variation. Bottom: Prediction with the phylogenetic HMM. The figure contains two subfigures. Each
subfigure is composed of three graphs, which plot the marginal posterior probabilities of the three topologies defined in
Figure 3.5 against the position in the DNA sequence alignment. Left panel: Prediction with the maximum likelihood
method of Section 3.2. Right panel: Prediction with Bayesian learning using the MCMC scheme of Section 3.3.
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Figure 3.7: Computational complexity of the phylogenetic HMM. Given a set of non-recombinant strains
with a known phylogenetic tree, different segments of the DNA sequence of a putative recombinant strain will be
grouped with different leaves of the tree. This leads to n candidate tree topologies to be included as hidden states in
the phylogenetic HMM. Note that this number is considerably less than the total number of unrooted tree topologies
for (n + 1) taxa, which is (2n− 3)!!.

t = 537 seems to be the result of rate heterogeneity, HMM-ML predicts a recombination event with
a clear transition from topology St = 1 into St = 2. This seems to be the result of overfitting: since
the distribution of the nucleotide column vectors yt in the indicated region is significantly different
from the rest of the alignment, modelling this region with a different hidden state can increase the
likelihood although the hidden state itself (topology St = 2) might be ill-matched to the data. This
deficiency is redeemed with HMM-Bayes, whose prediction is shown in Figure 3.6, bottom right.
The critical region between sites t = 506 and t = 537 is again identified, indicated by a strong drop
in the posterior probability for the predominant topology, P (St = 1|D). However, the uncertainty
in the nature of this region is indicated by a distributed representation, where both alternative
hidden states, St = 2 and St = 3, are assigned a significant probability mass. With the prediction
of this uncertainty, HMM-Bayes also indicates a certain model misspecification inherent in the
current scheme – the absence of hidden states for representing different nucleotide substitution
rates. I will discuss a generalization of the phylogenetic HMM to address this shortcoming in the
next chapter.
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3.5 Computational Complexity

The phylogenetic HMM assumes that each potentially possible phylogenetic tree topology consti-
tutes a separate hidden state of the HMM. As mentioned in the Introduction chapter, there are
(2n− 5)!! different unrooted tree topologies for n taxa. Hence, the number of hidden states in the
HMM increases superexponentially with the number of sequences in the alignment. One approach
is to restrict the phylogenetic HMM to small sets of taxa and use it as a fine resolution method
in conjunction with the window-based approaches that were discussed in the previous chapter; the
latter are used for coarse-grain screening so as to identify sets of putative recombinant strains. I
have applied this procedure in [DH15]. The other approach is illustrated in Figure 3.7. If we have
a set of non-recombinant strains, then different sequence segments of a putative recombinant strain
will be grouped with different leave nodes of the phylogenetic tree formed by the non-recombinant
strains, and the number of potentially possible tree topologies reduces from (2n− 3)!! to n. I have
investigated this approach with Alexander Mantzaris, who has demonstrated its feasibility in his
MSc dissertation [91].

3.6 Appendix

Hidden state sequences can be sampled from the conditional distribution in (3.10) with the follow-
ing dynamic programming scheme (which I called the stochastic forward-backward algorithm in
[DH52]). Define

αt(St) = P (y1, . . . ,yt, St) (3.16)

which is the function computed in the forward pass of the forward-backward algorithm for HMMs;
see, for instance, [109]. Now,

P (St|St+1, . . . , SN ,y1, . . . ,yN )
∝ P (St, St+1, . . . , SN ,y1, . . . ,yN )
= P (yt+1, . . . ,yN , St+1, . . . , SN |St,y1, . . . ,yt)P (St,y1, . . . ,yt)
= P (yt+1, . . . ,yN , St+1, . . . , SN |St)αt(St)
= P (yt+1, . . . ,yN , St+2, . . . , SN |St+1)P (St+1|St)αt(St)
∝ P (St+1|St)αt(St) (3.17)

The simplifications carried out here follow directly from the independence relations in HMMs. The
last step follows from the fact that the first term in the second-last line is independent of St and
therefore cancels out in the normalization:

P (St = τk|St+1, . . . , SN ,y1, . . . ,yN ) =
P (St+1|St = τk)αt(St = τk)∑
i P (St+1|St = τi)αt(St = τi)

(3.18)
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Obviously, any scaling constant also cancels out in the normalization; hence replacing αt(St) by
some scaled version for numerical stabilization of the forward algorithm will not affect the result.
The algorithm is initialized by drawing the final state, SN , from the following distribution:

P (SN = τk|y1, . . . ,yN ) =
αN (SN = τk)∑
i αN (SN = τi)

(3.19)

The overall algorithm can thus be summarized as follows: First, run the (scaled) forward algorithm
[109]. Next, sample SN from (3.19). Finally, sample the remaining states SN−1, . . . , S1 recursively
from (3.18). Note that at the end of this recursion, a whole state sequence S = (S1, . . . , SN )
has been sampled from P (S|w(i),θ(i), ν(i),D) of equation (3.10). In [DH52] we showed that as a
consequence of the improved mixing and convergence, the computational costs could be reduced
by an order of magnitude over the Gibbs-within-Gibbs scheme of (3.15).
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Chapter 4

Distinguishing between Rate
Heterogeneity and Recombination

A shortcoming of phylogenetic HMMs is their inability to differentiate between re-
combination and rate heterogeneity. I address this issue in the present chapter, which
summarizes my work in [DH9,DH10,DH20,DH46]. The idea is to extend the HMM
approach to a factorial HMM (FHMM). The states of the first hidden chain repre-
sent tree topologies, as before, and transitions between these states are indicative of
recombination events. The states of the second independent hidden chain represent
different global scaling factors of the branch lengths, and transitions between these
rate states indicate rate heterogeneity, potentially related to variations in the selec-
tive pressure. I discuss different Bayesian inference schemes based on Gibbs sampling
[DH20] and transdimensional reversible jump MCMC [DH9], Bayesian model selection
[DH10] and within-codon effects [DH46].

4.1 Introduction and Method

The results illustrated in Figure 3.6 have revealed a fundamental limitation intrinsic to the phylo-
genetic HMM. While it tends to detect the location of recombinant regions and their demarcation
points more accurately than most other techniques, it inherently fails to distinguish between recom-
bination and rate heterogeneity. Hence, genomic regions under different selective pressure tend to
be erroneously predicted as resulting from recombination events. The nature of rate heterogeneity
is illustrated in Figure 4.1, and this chapter will discuss how to extend the model so as to detect it
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Figure 4.1: Simple illustration of rate heterogeneity. As discussed in the Introduction chapter, the branch
lengths of the phylogenetic tree are given by the product of a nucleotide substitution rate α and physical time t, as
shown in equation (1.1). Under negative selective pressure, the mutation rate is reduced, and the branch lengths
shrink by a factor 0 < r < 1. Under positive selective pressure, the mutation rate is increased, and the branch lengths
increase by a factor r > 1.

and distinguish it from recombination.

The basic idea is depicted in Figures 4.2 and 4.3. In addition to the hidden states that denote
phylogenetic tree topologies, denoted by St, we introduce a separate a priori independent chain of
hidden states, denoted by Rt, which denote different global scaling factors of the branch lengths.
Transitions between St states are indicative of recombination. Transitions between Rt states indi-
cate rate variation.

I shall briefly describe the mathematical model I proposed in [DH20] and [DH9], the latter in
collaboration with Wolfgang Lehrach. The modelling starts by adopting an idea proposed in [139].
Different sites in the DNA sequence alignment are given separate branch length vectors wt =
(w1

t , . . . , w
[2n−3]
t ), for which prior independence between the individual branches wi

t is assumed:

P (wt|ρ) =
∏

i

P (wi
t|ρ); P (wi

t|ρ) = ρ−1 exp(−wi
t/ρ) (4.1)

where ρ is a scaling factor determined by the rate state Rt. This prior is conjugate to the likelihood
and makes integrating out the branch lengths analytically tractable:

P (yt|St, ρ) =
∫
P (yt|St,wSt)P (wt|ρ)dwt (4.2)

See [139] for details. I shall discuss the nature of this approximation in more detail in Section 4.5,
but for now it is just noted that as a consequence of this integration, the branch lengths of the
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Figure 4.2: Factorial hidden Markov model (FHMM). Black nodes represent observed random variables; in
the present applications these are columns of a DNA sequence alignment. Empty nodes represent latent variables
or hidden states. There are two different types of hidden states, denoted by St and Rt. Both have a Markovian
dependence structure and are a priori independent. In the present applications, the St states define the topology of
a phylogenetic tree, while the Rt states are associated with different global scaling factors of the branches.

phylogenetic tree effectively disappear and the model simplifies. The complete likelihood factorizes
as follows:

P (D,S,R, νS , νR) = P (S1)P (R1)P (νS)P (νR) (4.3)
N∏

t=1

P (yt|St, Rt)
N∏

t=2

P (St|St−1, νS)
N∏

t=2

P (Rt|Rt−1, νR)

where P (yt|St, Rt) is given by equation (4.2), D denotes the DNA sequence alignment, which has
N columns, S and R denote the sequences of topology states, St, and rate states, Rt, respectively,
and the parameters νs and νr define the transition probabilities for topology and rate states, as in
(3.2):

P (St|St−1, νS) = ν
δ(St,St−1)
S

(
1− νS

K − 1

)[1−δ(St,St−1)]

(4.4)

P (Rt|Rt−1, νR) = ν
δ(Rt,Rt−1)
R

(
1− νR

K̃ − 1

)[1−δ(Rt,Rt−1)]

(4.5)

These parameters are given conjugate beta priors. Sampling from the joint posterior distribution
follows a Gibbs sampling procedure [25], where each parameter group is iteratively sampled sep-
arately conditional on the others. So if the superscript (i) denotes the ith sample of the Markov
chain, we obtain the (i+ 1)th sample as follows:

S(i+1) ∼ P (·|R(i), ν
(i)
S , ν

(i)
R ,D) (4.6)

R(i+1) ∼ P (·|S(i+1), ν
(i)
S , ν

(i)
R ,D) (4.7)

ν
(i+1)
S ∼ P (·|S(i+1),R(i+1), ν

(i)
R ,D) (4.8)

ν
(i+1)
R ∼ P (·|S(i+1),R(i+1), ν

(i+1)
S ,D) (4.9)
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Figure 4.3: Phylogenetic FHMM. The figure shows an application of an FHMM, depicted in Figure 4.2, to
DNA sequence alignments, with the objective to distinguish between recombination and rate heterogeneity. There
are different a priori independent hidden Markov chains. Hidden states denoted by St represent different phylogenetic
tree topologies, and state transitions indicate recombination events. Hidden states denoted by Rt represent different
global scaling factors of the branch lengths, and state transitions indicate rate variation. One can optionally include a
further chain of hidden states, which represent features of the underlying nucleotide substitution model (here denoted
by Qt).

where the order of these sampling steps is arbitrary. Sampling of the hidden state sequences S and
R in equations (4.6) and (4.7) is effectively achieved in linear time complexity with the dynamic
programming scheme described in Section 3.6 (the stochastic forward-backward algorithm). The
distributions for the transition parameters νS and νR in equations (4.8) and (4.9) are beta distri-
butions, which depend on sufficient statistics computed from the state sequences R and S, as in
equation (3.14).

The distributions of interesting quantities are obtained by marginalization. For instance, the
marginal probability of the tree topology at site t, which is used to detect recombination events,
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follows from

P (St|D) =
∑
S1

. . .
∑
St−1

∑
St+1

. . .
∑
SN

∑
R

∫
P (S,R, νS , νR|D)dνSdνR (4.10)

P (Rt|D) =
∑
R1

. . .
∑
Rt−1

∑
Rt+1

. . .
∑
RN

∑
S

∫
P (S,R, νS , νR|D)dνSdνR (4.11)

where the marginalization is carried out as described in the text below equation (3.8) and in
Section 2.1.

4.2 Findings

Plotting the marginal posterior probabilities for tree topologies P (St|D) from (4.10) along the DNA
sequence alignment for Neisseria, as in Figure 3.6, eliminates the spurious changepoints associated
with rate heterogeneity. These transitions are found when plotting P (Rt|D) from (4.11) along the
sequence alignment. For details see [DH20]. In combination with several related studies described in
[DH20] these findings demonstrate that the phylogenetic FHMM successfully distinguishes between
recombination and rate variation.

4.3 Model Extension

The model proposed in [DH20] associates the rate states Rt with fixed scaling parameters and
keeps the number of rate states constant at an a priori defined value. I extended this approach
in collaboration with Wolfgang Lehrach in [DH9] to infer both the number of rate states and the
associated scaling parameters from the posterior distribution. Starting from a truncated Poisson
prior on the number of rate states, this trans-dimensional approach is naturally effected with the
reversible jump Markov chain Monte Carlo (RJMCMC) algorithm proposed in [54]. The idea is to
introduce birth and death moves that change the number of rate states and, hence, the dimension
of the associated scaling factor vector ρ, while ensuring reversibility of the Markov chain. The
increased model flexibility leads to identifiability issues that are common to mixture models, and
their solution is discussed in detail in [DH9].
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Figure 4.4: Phylogenetic (dual) multipe changepoint model. The figure illustrates an alternative to the
phylogenetic FHMM, based on (dual) multiple changepoint processes. Top panel: A homogeneous DNA sequence
alignment. Centre panel: The multiple changepoint model, proposed in [139], divides the DNA sequence alignment
into separate segments, where each segment is governed by its own phylogenetic tree topology (Topo), scaling factor
for the branch lengths (r), and nucleotide substitution parameters (Q). Bottom panel: The dual multiple changepoint
model, proposed in [100], divides the DNA sequence alignment into two different types of segments, where segments
of the first type are governed by separate tree topologies (Topo), while segments of the second type are associated
with different scaling factors for the branch lengths (r) and different nucleotide substitution parameters (Q).

4.4 Comparison with Alternative Approaches from the Literature

The two main competing schemes proposed in the literature are the multiple changepoint model
(MCP) of Suchard et al. [139], and the dual multiple changepoint model (DMCP) of Minin et al.
[100]. The underlying ideas are illustrated in Figure 4.4. The MCP divides the DNA sequence
alignment into segments via a multiple changepoint process, where each segment is governed by
its own phylogenetic tree topology and scaling factor for the branch lengths1 . The number of
changepoints is given a truncated Poisson prior, and the changepoints along with all other model
parameters are sampled from the posterior distribution with RJMCMC, using birth and death
moves for the changepoints. The MCP model is conceptually similar to the phylogenetic HMM,
with segments corresponding to states. Like the phylogenetic HMM, it suffers from the inability

1Like the phylogenetic FHMM depicted in Figure 4.3, the MCP and DMCP models potentially also allow for
changes in the nucleotide substitution parameters. In order to focus this exposition on the essential concepts and
avoid extraneous details, I will not discuss this any further here. The interested reader is referred to [100, 139] and
[DH9].
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Figure 4.5: Comparison of the standard phylogenetic model (left) with the no common mechanism
model (right). In both panels, the y′ts represent the columns in the DNA sequence alignment, w is a vector of branch
lengths, and ρ is a hyperparameter determining the prior distribution over the branch lengths, via equation (4.1),
which can itself have a prior distribution depending on some higher-level hyperparameter α. The left panel shows
the standard phylogenetic model, with a branch length vector w common to all sites. The right panel shows the
no-common-mechanism model, with separate independent branch length vectors wt, associated with the sites t in the
alignment. As a consequence of this independence assumption, the branch lengths can be integrated out analytically,
as described in Section 4.1.

to distinguish between tree topology changes, indicative of recombination, and rate heterogeneity.
This shortcoming is addressed with the DMCP, which employs two different types of changepoints:
one to mark changes in the phylogenetic tree topology, the other to allow for changes in the global
scaling of the branch lengths.

We have compared the DMCP model with our phylogenetic FHMM in [DH9]. The changepoint
process can be regarded as a special case of an HMM with unidirectional transition probabilities,
meaning that a state can never be visited twice. When a recombinant region is inserted into
a DNA sequence alignment, the phylogenetic parameters of the two flanking regions have to be
inferred separately, as they constitute different parameter sets. This model is counter-intuitive
and potentially leads to an unnecessarily inflated inference uncertainty for short alignments. The
problem is avoided with the phylogenetic HMM/FHMM, where the two flanking regions correspond
to the same state and therefore share the same parameters.

The second difference is that in the DMCP model the segment lengths and the number of dif-
ferent tree topologies/ differently diverged regions are jointly determined by the distribution over
the changepoints. Consequently, these quantities are coupled. In our phylogenetic FHMM, the
number of differently diverged regions corresponds to the number of different rate states. This
is different from the segment lengths, which are determined by the transition parameter νR (the
average segment length is 1/(1− νR)). Consequently, the DMCP is effectively a special case of our
phylogenetic FHMM with a fixed value of νR and each state occurring only once. In contrast, the
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Figure 4.6: Demonstration of the failure of the no-common-mechanism model in the Felsenstein zone.
The figures show the posterior probability of the correct tree topology, obtained with Bayesian model selection based
on MCMC, as discussed in [DH10]. The tree configurations depend on two branch lengths, d2 and d3, as defined in
Figure 1.8. In each subfigure, the horizontal axis refers to d2, and the vertical axis refers to d3. The grey shading
indicates the value of the inferred posterior probability, as indicated in the legend of Panel (b), ranging from 0 (black)
to 1 (white). Panel (a) shows the results obtained for the no-common-mechanism model, represented in the right
panel of Figure 4.5. Panel (c) shows the results obtained for the standard model, shown in the left panel of Figure 4.5.
The results were obtained from a DNA sequence alignment simulated from the phylogenetic tree of Figure 1.8. The
failure of the no-common-mechanism model in the Felsenstein zone becomes evident.

phylogenetic FHMM separates the number of states (or different segment types) from the average
segment length, where the average segment length is not set to a fixed value, but is also inferred.
For an empirical comparison between the proposed phylogenetic FHMM and the DMCP model,
see [DH9].

4.5 Criticism and Relaxation of the No-Common-Mechanism
Model

The three models described in the previous sections, the MCP, DMCP and phylogenetic FHMM
models, have one feature in common: a completely factorizable prior is placed on the vector of
branch lengths, as defined in (4.1) and depicted in the right panel of Figure 4.5. In this way the
branch lengths can be integrated out analytically. This is convenient, as the marginal likelihood
of the tree topology, the nucleotide substitution rate, and further parameters of the nucleotide
substitution model (like the transition-transversion ratio) can be computed in closed from. In
this way, the computational complexity of sampling changepoints (MCP,DMCP) or hidden state
sequences (PFHMM) from the posterior distribution with MCMC is substantially reduced.

The subject of my joint work with Alexander Mantzaris, reported in [DH10], was to investigate
the effect of the approximation on which the analytic integration of the branch lengths is based.
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Figure 4.7: Improvement of the phylogenetic FHMM. The left panel shows the probabilistic graphical model
representation of the phylogenetic FHMM of [DH9,DH20], described in Section 4.1. The yt’s represent the columns
in the DNA sequence alignment, where the subscript t = 1, . . . , N indicates the site in the alignment. Each site t is
associated with a hidden state St that defines the tree topology, a vector of branch lengths wt, and a second hidden
state Rt that defines the hyperparameter of the prior distribution on the branch lengths, as defined in equation (4.1).
Both hidden states St and Rt have a Markovian dependence structure. The chosen form of the model allows the
branch lengths to be integrated out analytically, as described in Section 4.1. This results in the simplified model
depicted in the centre panel. Note that this model is a phylogenetic factorial HMM, where one type of hidden states
(S1, . . . , SN ) defines the tree topology, and the other type of hidden states (R1, . . . , RN ) defines the average amount
of mutational divergence. The right panel shows the probabilistic graphical model representation of the improved
phylogenetic factorial HMM proposed in [DH10]. The model is similar to the one presented in the left panels with
the essential difference that a common branch length vector w is shared among all sites. This is a generalization of
the standard phylogenetic model, depicted in the left panel of Figure 4.5, which allows for recombination and rate
heterogeneity while avoiding the inconsistency of the no-common-mechanism model.

A detailed analysis of the underlying approximation revealed that the resulting model exhibits a
behaviour very similar to maximum parsimony, described in Section 1.3. In particular, it suffers
from the same inconsistency problem and is intrinsically susceptible to the systematic failure in the
Felsenstein zone2 [40], as we demonstrated with Bayesian model selection. The results are shown
in Figure 4.6.

The root of the problem is that for the branch lengths to be integrated out analytically, as in
(4.2), the model has to be modified so as to associate a separate branch length vector wt with each
position t in the DNA sequence alignment. This model is equivalent to the no-common-mechanism
model proposed in [145]. It is important to note that it is not the independence assumption of
equation (4.1) alone that leads to this simplification, a conclusion one might erroneously draw from
[139]. Rather, the more restrictive independence assumption of the no-common-mechanism model,
depicted in the right panel of Figure 4.5, is needed. As a consequence of the latter independence
assumption the model becomes over-complex, though, with no information sharing between different
sites with respect to the branch length estimation. In terms of statistical terminology, the no-
common-mechanism model turns the structural parameters w into a set of incidental parameters3.
As discussed in [52], this implies that maximum likelihood is no longer guaranteed to provide a

2Illustrated in Figure 1.8.
3Structural parameters are parameters that appear in the probability distributions of all the observations, whereas

an incidental parameter appears in the probability distributions of only a subset of the observations. See [52] for
further details.
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Figure 4.8: Illustration of regional versus within-codon rate heterogeneity. Each circle corresponds to a nucleotide
in a DNA sequence, and the circle diameter symbolizes the average nucleotide substitution rate at the respective
position. The top panel (a) shows a “homogeneous” DNA sequence composed of six codons, where each third position
is more diverged as a consequence of the nature of the genetic code. The bottom panel (b) shows a hypothetical
DNA sequence subject to regional rate heterogeneity, where the second half on the right of the dashed vertical line
constitutes a region that is more evolved.

consistent estimator. This aspect, which has not been considered for any of the three methods
discussed in the previous sections – MCP, DMCP and the factorial FHMM – causes the same
inconsistency problems as those found in maximum parsimony.

To address this problem and improve the phylogenetic FHMM of [DH9,DH20], we proposed a mod-
ification without the no-common-mechanism assumption for the branch lengths. The difference
between the models is depicted in Figure 4.7. This modification increases the computational com-
plexity of the inference scheme, as the branch lengths have now to be numerically sampled from the
posterior distribution with MCMC. However, in [DH10] we demonstrate that the resulting model
avoids the susceptibility to spurious topology changes in the Felsenstein zone, and thereby improves
the accuracy of detecting recombination in DNA sequence alignments.

4.6 Future Work

With four nucleotides occupying three positions in the codon, there are 43 = 64 codons coding for
20 amino acids. This mismatch renders the genetic code intrinsically redundant. The redundancy is
such that nucleotide substitutions in the third position occasionally do not change the amino acid,
or lead to an amino acid with similar biophysical properties. Consequently, there is less selective
pressure on the third codon position, resulting in an effectively increased nucleotide substitution
rate. For an illustration, see Figure 4.8.

To prevent any confounding between the rate heterogeneity intrinsic to the genetic code and the
regional rate heterogeneity discussed in the previous sections, as illustrated in Figure 4.8, we ex-
tended the model so as to disambiguate between these two effects. Define the branch lengths to
be of the form wt = rRtλItw̃t, where the w̃t are normalized such that the L1-norm is equal to 1:
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||w̃t||1 = 1. There are two scaling factors, associated with a region (rRt) and a codon (λIt) effect.
As before, Rt indicates a rate state of the FHMM. In addition, we have an indicator It ∈ {1, 2, 3}
for the three codon positions. Note that the normalization constraint ||w̃t||1 = 1 can easily be en-
forced in the MCMC simulations by proposing new vectors w̃t from a Dirichlet distribution. This
procedure also ensures that all elements of w̃t are non-negative.

Together with Alexander Mantzaris, I have implemented and tested this model. Results on simu-
lated sequence alignments are available from [DH46]. Applications to real DNA sequence alignments
are the subject of his PhD studies.
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Chapter 5

In Silico Prediction of Protein
Interactions

Short well defined domains known as Peptide Recognition Modules (PRMs) regu-
late many important protein-protein interactions involved in the formation of macro-
molecular complexes and biochemical pathways. Since high-throughput experiments
like yeast two-hybrid and phage display are expensive and intrinsically noisy, it
would be desirable to more specifically target or partially bypass them with com-
plementary in silico approaches. In my joint work with Wolfgang Lehrach and Chris
Williams [DH19,DH50] we presented a probabilistic discriminative approach to pre-
dicting PRM-mediated protein-protein interactions from sequence data. To overcome
potential susceptibility to overfitting we adopted a Bayesian a posteriori approach
based on a Laplacian prior in parameter space. The proposed method was tested
on two data sets of protein-protein interactions involving 28 SH3 domain proteins in
Saccharmomyces cerevisiae, where our discriminative model achieved a better out-
of-sample prediction performance than the state-of-the-art probabilistic generative
model.

5.1 Overview

Peptide recognition modules (PRMs) are specialized compact protein domains that mediate many
important protein-protein interactions. They are responsible for the assembly of critical macro-
molecular complexes and biochemical pathways [105], and they have been implicated in carcino-
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Figure 5.1: The yeast two hybrid interaction network of SH3. The labelled squares represent the central
SH3 domains, while the circles represent the peripheral proteins that were found to bind to the SH3 domains.

genesis and various other human diseases [140]. PRMs recognize and bind to peptide ligands that
contain a specific structural motif. One of the most actively studied PRMs is the SH3 domain,
which binds to peptide ligands that contain a particular proline-rich core. Tong et al. [144] carried
out two extensive experimental studies to infer the network of SH3-mediated protein-protein inter-
actions in Saccharmomyces cerevisiae. They identified 28 SH3 domain proteins in the S. cerevisiae
proteome, which were used as baits and screened against conventional and proline-rich libraries in
a yeast two-hybrid experiment [146]. In a second independent study, they screened random pep-
tide libraries by phage display [146] to identify the consensus sequence for preferred ligands that
bind to each PRM. Based on these consensus sequences, they inferred a protein-protein interaction
network that links each PRM to proteins containing the preferred ligand. Since both experimental
procedures are intrinsically noisy, the two independently inferred interaction networks were found
to show only a modest degree of overlap, as shown in Figure 5.2. Reiss and Schwikowski [111]
addressed the question of whether computational in silico approaches would allow some of the
difficult and expensive experimental procedures to be more specifically targeted, or even bypassed
altogether. To this end, they developed a probabilistic generative model of the SH3 ligand peptides,
based on the widely used Gibbs sampling motif finding algorithm [81, 88]. Directly applying the
standard Gibbs motif sampler to the S. cerevisiae SH3 interaction data faces the difficulty that
each SH3 domain is only involved in a small number of interactions (between 1 and 20), which
leads to a poor motif conservation and a high susceptibility to random artifacts due to the small
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Figure 5.2: Protein interactions obtained with different experimental procedures. Tong et al. [144]
compared two different assays for measuring protein interactions related to 28 SH3 domain proteins in yeast. With
yeast two-hybrid, they found 285 interactions. With phage display, they found 394 interactions, involving the same
SH3 domain proteins. Only 59 interactions were consistently detected with both assays.

sample size. Conversely, searching for a single motif in all identified SH3 domains lacks the speci-
ficity to identify anything but a broad consensus pattern. Reiss and Schwikowski [111] therefore
devised a compromise strategy, where the network information was used as a prior on the structure
of individual motifs, which were searched for with a modified version of the Gibbs motif sampler.
The prior was adjusted to become discriminative, giving higher probability to those motifs that are
distinct from non-binding motifs.

Reiss and Schwikowski [111] encouragingly demonstrate that a probabilistic model trained on pro-
tein sequences and observed physical interactions can succeed in independently predicting new
protein-protein interactions mediated by SH3 domains. However, a shortcoming of their model
is a dependence on tuning parameters that have to be chosen in advance by the user and that
are not inferred from the data. Inappropriate values reduce the performance of their algorithm
to using standard motif searching algorithms, and it is unlikely that universal values applicable
to different protein (super-) families exist. Also, the proposed model borrows substantial strength
from its heuristic discriminative modification of the prior, which again depends on various tuning
parameters.

In my joint work with Wolfgang Lehrach and Chris Williams [DH19,DH50] we proposed an al-
ternative in silico method for the prediction of SH3-mediated protein-protein interactions, which
addresses some of the shortcomings of the model introduced in [111]. A key feature of our model
is that it is discriminative: given a set of protein sequences, the model only attempts to find do-
mains that distinguish between different SH3 binding domains. This is in contrast to the approach
in [111], which is based on a generative model of the whole sequence. As discussed in [130], a
generative approach can be confounded by repetitive or over-represented motifs that are unrelated
to PRM-peptide interactions, which our discriminative model avoids by formulating the learning
problem in terms of a supervised classification problem.
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Figure 5.3: Illustration of the discriminative model for predicting protein-peptide interactions, as
defined by equation (5.1). The inner sum in (5.1) is a motif detector, the outer sum extends over all possible
motif positions, and the result of the summation is put through a nonlinear transfer function of the form logit(log(. . . )).
A derivation can be found in [DH19].

The model we propose is based on a DNA-sequence model applied in [129, 130]. However, due to
the larger size of the alphabet (20 amino acids instead of 4 nucleotides) and the small number of
interactions per SH3 domain, their maximum likelihood approach to parameter estimation is bound
to lead to serious overfitting. An essential component of our approach, therefore, is the inclusion
of a regularization scheme, resulting in a maximum a posteriori (MAP) or penalized maximum
likelihood estimate of the parameters based on a Laplacian (L1 norm) prior. The methodological
details can be found in [DH19].

5.2 Method

This section provides a brief sketch of the method; for a proper exposition, see [DH19]. Denote by
R ∈ {0, 1} a binary variable indicating the presence (R = 1) or absence (R = 0) of a protein-peptide
interaction, and by x = [S1, S2, . . . , SN ] a peptide sequence of N amino acids, with St denoting
the amino acids at the tth position in the sequence. Given this sequence, the probability of an
interaction with a specified peptide recognition module is given by

P (R = 1|S1, S2, . . . , SN ) = logit

(
log

[
w0

N −W + 1

N−W∑
t=0

exp

(
W∑

k=1

wk(St+k)

)])
(5.1)
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The model has 20W + 1 free parameters: w = {w(0), wk(1), . . . , wk(20)}; k ∈ {1, 2, . . . ,W}, where
W is an a priori chosen constant that indicates the expected length of the binding motifs, and
wk(a) denotes a weight associated with intra-motif position k for amino acid a ∈ {1, . . . , 20} (recall
that there are 20 amino acids). An illustration is given in Figure 5.3, and a proper derivation of
(5.1) can be found in [DH19]. A brief sketch of the underlying idea is as follows. Assume that a
sequence without any binding motif, R = 0, is distributed according to the background distribution

P (S1, S2, . . . , SN |R = 0) =
N∏

t=1

θ0(St) (5.2)

with θ0(i) ∈ [0, 1] for all amino acids i ∈ {1, . . . , 20}, and
∑20

i=1 θ0(i) = 1. Given a binding sequence
(R = 1), with a binding motif of length W starting at position m + 1, the probability of the
respective sequence is

P (S1, S2, . . . , SN |R = 1, start = m+ 1)

=
m∏

t=1

θ0(St)
W∏

k=1

ψk(Sm+k)
N∏

t=m+W+1

θ0(St) =
N∏

t=1

θ0(St)
W∏

k=1

ψk(Sm+k)
θ0(Sm+k)

(5.3)

The parameters ψk(i), 1 ≤ k ≤ W and 1 ≤ i ≤ 20, define the so-called position sensitive scoring
matrix of the binding motif, and we have for all 1 ≤ k ≤ W : ψk(i) ∈ [0, 1],

∑20
i=1 ψk(i) =

1. The probability of a binding sequence (R = 1) with a motif starting anywhere is given by
marginalization:

P (S1, S2, . . . , SN |R = 1)

=
N−W∑
m=0

P (start = m+ 1)P (S1, S2, . . . , SN |R = 1, start = m+ 1)

=

(
N∏

t=1

θ0(St)

)
1

N −W + 1

N−W∑
m=0

W∏
k=1

ψk(Sm+k)
θ0(Sm+k)

(5.4)

where a uniform prior on the binding locations, P (start = m + 1), has been assumed. We now
apply Bayes rule to obtain:

P (R = 1|S1, S2, . . . , SN ) =
P (S1, S2, . . . , SN |R = 1)P (R = 1)

P (S1, S2, . . . , SN )

=
P (S1, S2, . . . , SN |R = 1)P (R = 1)

P (S1, S2, . . . , SN |R = 0)P (R = 0) + P (S1, S2, . . . , SN |R = 1)P (R = 1)

=

(
1 +

P (R = 0)P (S1, S2, . . . , SN |R = 0)
P (R = 1)P (S1, S2, . . . , SN |R = 1)

)−1

=

(
1 +

[
P (R = 1)
P (R = 0)

1
(N −W + 1)

N−W∑
m=0

W∏
k=1

ψk(Sm+k)
θ0(Sm+k)

]−1)−1
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Figure 5.4: Motivation for the Laplace prior. The figure illustrates the contours of the log likelihood (blue)
along with the log prior (shaded area) for the Gaussian prior on the left and the Laplacian prior (Lasso) on the right.
The maximum a posteriori (MAP) parameter vector w is denoted by w∗. It is seen that the Lasso gives a sparser
solution in which one of the parameters (w2) is exactly zero. Illustration taken from [14].

With the definitions

wk(l) = log
ψk(l)
θ0(l)

, w0 =
P (R = 1)
P (R = 0)

, logit(z) =
1

1 + exp(−z)
(5.5)

we get equation (5.1).

Given a training set D = {xi, Ri}; 1 ≤ i ≤ T of T peptide sequences xi and their associated binding
indicators Ri, the (log) likelihood is given by

P (D|w) =
T∏

i=1

y(xi,w)Ri [1− y(xi,w)](1−Ri)

logP (D|w) =
T∑

i=1

Ri log y(xi,w) + (1−Ri) log y(xi,w) (5.6)

where y(xi,w) is given by (5.1). As the maximum likelihood configuration is susceptible to over-
fitting, we include a regularization term based on the L1-norm (LASSO), proposed in [142, 152].
This corresponds to a Laplacian prior, P (w) ∝ exp(−α|w|), and we aim to estimate the parameter
vector w in a MAP (maximum a posteriori) sense:

w∗ = argmaxwP (w|D) = argmaxw [logP (D|w) + logP (w)] (5.7)

The motivation for this prior is as follows. First, it shrinks the parameters to zero. From the
definitions (5.5) it is seen that zero parameters correspond to the absence of an interaction; hence
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Figure 5.5: Comparative evaluation of in silico methods for predicting protein-peptide interactions.
The graphs show ROC curves obtained for the three methods compared in our study: GEN (narrow solid lines): gener-
ative model of Reiss and Schwikowski [111]; DIS-I (thick solid line): discriminative model, informative initialization;
and DIS-E (dashed line): ensemble of discriminative models, random initializations. A ten-fold cross-validation
scheme was applied, as described in the main text. Left panel: yeast two-hybrid; right panel: phage display. The
areas under the curves are, for yeast two-hybrid: GEN: 0.61, DIS-I: 0.67, DIS-E:0.67, and for phage display: GEN:
0.69, DIS-I: 0.83, DIS-E:0.71.

the prior has a regularization effect that discourages spurious interactions. This regularization effect
is stronger for the Laplacian prior (Lasso) than the Gaussian prior (ridge regression) in that more
parameters tend to be driven down to zero, leading to sparser network structures. An illustration
is given in Figure 5.4. Since there is no closed-form solution to this optimization problem (5.7), we
follow a gradient ascent scheme. The details, including the setting of the hyperparameter α, are
discussed in [DH19].

5.3 Findings

We applied the proposed discriminative model with different regularization schemes to the phage
display and yeast two-hybrid protein interaction data of Tong et al. [144].1 We evaluated the
generalization performance with a 10-fold cross-validation scheme where the data were randomly
partitioned into 10 folds. The generalization performance was then evaluated on the current fold,
and the other 9 folds were used for training. We obtained an average out-of-sample performance

1We removed SH3 domain proteins that only bind to a single peptide, as there would be no way to validate these
interactions on an independent test set. With this modification, the phage display data set contains 17 SH3 domains,
207 binding partners, and 381 interactions, while the yeast two-hybrid data set (displayed in Figure 5.1) has 28 SH3
domains, 143 binding partners, and 285 interactions. Further details can be found in the supplementary material of
[144].
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Figure 5.6: Biological validation of the predicted protein-peptide interaction. When training our model
on the yeast two-hybrid data, we recovered 25 percent of the interactions in the intersection set, but only 8 percent
of the interactions in the complementary non-intersection set. When training our model on the phage display data,
we again recovered 25 percent of the interactions in the intersection set, but only 9 percent of the interactions in the
non-intersection set. This indicates that the subset of more reliable interactions (i.e. interactions found with both
assays) is noticeably enriched for high-scoring in silico predictions.

by repeating this for all 10 folds.

For comparison with [111], we measured the performance in terms of receiver operating characteris-
tics (ROC) curves, which are explained in Section 6.2. In brief, they are obtained by subjecting the
predicted posterior probabilities of protein-peptide interactions to a threshold parameter θ ∈ [0, 1],
keeping only those interactions whose posterior probability exceeds θ, and plotting the proportion
of predicted true interactions against the proportion of incurred false interactions for all values
θ ∈ [0, 1]. By numerically integrating over the whole range of θ ∈ [0, 1] we obtain the area under
the curve (AUC). This AUC score ranges from 0.5 for a random predictor to 1.0 for a perfect
predictor, with larger values generally indicating a better performance.

In our simulations we found that the Laplacian (L1-norm) regularization scheme achieved a sig-
nificant improvement (in terms of out-of-sample prediction accuracy) on both the unregularized
as well as the Gaussian (L2-norm) regularized models. We further compared three methods: (1)
the generative model of Reiss and Schwikowski [111]; (2) the proposed discriminative model, where
the weights were initialized from the position weight matrices of the sequence motifs learned with
the generative model; and (3) an ensemble of discriminative models; this ensemble was created
by training ten models from different initializations, and keeping the five models with the highest
training set scores. In what follows, I will refer to these methods as (1) GEN, (2) DIS-I, and
(3) DIS-E, respectively. For training the discriminative models in the comparative evaluation, the
Laplacian regularization scheme was applied throughout.
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The left panel of Figure 5.5 shows the ROC curves obtained for the yeast two-hybrid network. Both
discriminative methods, DIS-I and DIS-E, clearly outperform GEN in the right part of the graph,
for false positive rates (FPR) greater than 0.3. This is reflected in higher overall AUC scores, as
shown in the caption of Figure 5.5. The right panel of Figure 5.5 shows the ROC curves obtained for
the phage display network. The discriminative methods outperform the generative model, and this
improvement is considerably improved when starting the training simulations from an informative
initialization (DIS-I). We also found that the performance of all methods is consistently better
for the phage display network than for the yeast two-hybrid network, as the former assay is more
geared towards interactions that are mediated by short sequence binding motifs, i.e. more in line
with our modelling approach. We have discussed the detection and localization of these binding
motifs in [DH19].

An important practical application of the proposed method is the cleaning and filtering of high-
throughput interaction data. Our conjecture was that protein interactions that are assigned a
higher posterior probability score in silico are more reliable than those with a lower score. We
therefore assumed that interactions found with both the yeast two-hybrid as well as the phage
display experiments have, on average, higher posterior probability scores than those found with only
one experiment. Phrased differently, we assumed that the intersection of the sets of interactions
found with yeast two-hybrid and phage display would show an enrichment for higher-scoring in silico
interactions. To test this conjecture, we extracted for both experiments the 400 highest-scoring
interactions; this is the number of interactions detected experimentally with phage display. When
training our model on the yeast two-hybrid data, we recovered 25 percent of the interactions in
the intersection set, but only 8 percent of the interactions in the complementary non-intersection
set. When training our model on the phage display data, we again recovered 25 percent of the
interactions in the intersection set, but only 9 percent of the interactions in the non-intersection
set. An illustration is given in Figure 5.6. Hence, in both training simulations, we found that
the subset of more reliable interactions (that is, those interactions found with both experimental
methods) was noticeably enriched for high-scoring in silico predictions. This finding corroborated
our hypothesis that the predicted interaction scores are biologically consistent and that our method
thus offers a useful tool for filtering noisy high-throughput protein interaction data.
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Chapter 6

Reverse Engineering Gene Regulatory
Networks

Molecular pathways consisting of interacting proteins underlie the major func-
tions of living cells, and a central goal of systems biology is the elucida-
tion of their structure and regulatory mechanisms. Summarizing my work
in [DH3,DH4,DH5,DH12,DH13,DH14,DH16,DH18,DH23,DH41,DH42,DH44,DH45],
this chapter covers the reconstruction of gene regulatory networks from transcrip-
tomic profiles with probabilistic graphical models. It discusses the evaluation of the
network reconstruction accuracy from a realistic simulation study [DH18,DH23], the
systematic integration of prior knowledge in a Bayesian framework [DH13,DH16], the
inference of evolving network structures during an organism’s life cycle [DH41,DH42],
the approximate modelling of nonlinear regulation [DH12,DH44,DH45], and improved
MCMC schemes [DH3,DH4,DH14] for Bayesian learning of Bayesian networks.

6.1 Introduction

Molecular pathways consisting of interacting proteins underlie the major functions of living cells.
A central goal of molecular biology is therefore to understand the regulatory mechanisms of gene
transcription and protein synthesis, and the invention of DNA microarrays and deep sequencing
technologies, by which the transcription levels of thousands of genes can be measured simultane-
ously, mark an important breakthrough in this endeavour. Several approaches to the reverse en-
gineering of genetic regulatory networks from gene expression data have been explored, reviewed,
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Figure 6.1: Shortcomings of relevance networks. The left figure shows a hypothetical gene regulatory net-
work, where the transcription of the centre gene (the ‘regulator’) initiates the transcription of four other genes (the
‘regulatees’). The right figure shows the outcome from the application of relevance networks. Since all regulated
genes are under the influence of the same regulator, their expression profiles tend to be correlated and to have high
mutual information scores. All five genes are consequently grouped together, and the actual nature of the regulation
scheme remains unknown. Note that any approach based on clustering effectively leads to the same result, and hence
suffers from the same shortcoming.

for example, in [32, 34, 151].

At the most refined level of detail is a mathematical description of the biophysical processes in
terms of a system of coupled differential equations that describe, for example, the processes of
transcription factor binding, diffusion, and RNA degradation; see, for instance, [26, 151]. While
such low-level dynamics are critical to a complete understanding of regulatory networks, they
require detailed specifications of both the relationship between the interacting entities as well as
the parameters of the biochemical reaction, such as reaction rates and diffusion constants. Zak et
al. [156] found that a system of ordinary differential equations describing a regulatory network of
three genes with their respective mRNA and protein products is not identifiable when only gene
expression data are observed, and that rich data, including detailed information on protein–DNA
interactions, are needed to ensure identifiability of the parameters that determine the interaction
structure. In a more recent study, Vyshemirsky and Girolami [149] successfully demonstrated
the computation of the marginal likelihood for Bayesian ranking of biochemical system models
described by systems of coupled differential equations. Calderhead et al. [23] found a way to
reduce the computational costs with a nonlinear regression approach based on Gaussian processes
to avoid the need for an explicit solution of the differential equation. However, even with this trick,
the computational costs are substantial. Hence while the ideas presented in [23, 149] provide a
powerful approach to model selection and hypothesis testing, they are not viable for the ab initio
reconstruction of regulatory networks.

At the other extreme of the spectrum is the coarse-scale approach of clustering, illustrated in
Figure 6.1. Following up on the seminal paper by Eisen et al. [38], several clustering methods
have been applied to gene expression data, reviewed, for instance, in [34]. Clustering provides a
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computationally cheap way to extract useful information out of large-scale expression data sets.
The underlying conjecture is that co-expression is indicative of co-regulation; thus clustering may
identify genes that have similar functions or are involved in related biological processes. The
disadvantage, however, is that clustering only indicates which genes are co-regulated; it does not lead
to a fine resolution of the interaction processes that indicates, for example, whether an interaction
between two genes is direct or mediated by other genes, whether a gene is a regulator or regulatee,
and so on. Clustering, in effect, only groups interacting genes together in a monolithic block, where
the detailed form of the regulatory interaction patterns is lost. In the same vein, the popular and
widely applied approach of relevance networks, which produces ‘networks’ by connecting genes with
significant correlation or mutual information scores [21, 22], does not distinguish between direct and
indirect interactions either and therefore intrinsically fails to produce any meaningful regulatory
network structure; see Figure 6.1 for an illustration.

A promising compromise between these two extremes is the approach of Bayesian networks.
Bayesian networks have received increasing attention from the computational biology community
as models of gene regulatory networks, following up on pioneering work by Friedman et al.[46] and
Hartemink et al.[57]. Several tutorials on Bayesian networks have been published [60, 77], includ-
ing a comprehensive tutorial by myself; see Chapter 2 in [DH1]. I will therefore only qualitatively
recapitulate some aspects that are of relevance for the present chapter, and refer the reader to the
above tutorials for a thorough and more rigorous introduction.

The structure of a Bayesian network is defined by a directed acyclic graph (DAG) indicating how
different variables of interest, represented by nodes,“interact”. The word “interact” has a causal
connotation, which is ultimately of interest to the biologist, but has to be taken with caution in
this context, as explained shortly. The edges of a Bayesian network are associated with conditional
probabilities, defined by a functional family and their parameters. The interacting entities are as-
sociated with random variables, which represent some measured quantities of interest, like relative
gene expression levels or protein concentrations. We denote the set of all the measurements of all
the random variables as the data, represented by the letter D. As a consequence of the acyclicity
of the network structure, the joint probability of all the random variables can be factorized into a
product of lower-complexity conditional probabilities according to conditional independence rela-
tions defined by the graph structureM. The conditional probabilities depend on some parameters
q, which characterize the interactions between the nodes. Under certain regularity conditions, the
parameters associated with these conditional probabilities can be integrated out analytically:

P (D|M) =
∫
P (D|M,q)P (q|M)dq (6.1)

This allows us to compute the marginal likelihood or evidence P (D|M), which captures how well
the network structure M explains the data D. Two widely applied models for the likelihood
P (D|M,q) and the prior P (q|M) are the multinomial distribution (for discretized data) with a
conjugate Dirichlet prior, and a linear Gaussian distribution (for continuous data) with a conjugate
normal-Wishart prior. The resulting score P (D|M) was derived in [48, 61, 62] and is referred to
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Figure 6.2: Modelling feedback with dynamic Bayesian networks. Left: Recurrent network comprising
two genes with feedback that interact with each other. This structure is not a Bayesian network. Right: Equivalent
dynamic Bayesian network obtained by unfolding the recurrent network in time. Note that similar unfolding methods
have been applied in the study of recurrent neural networks ([65], page 183).

as the BDe score (discrete data) or BGe score (continuous data), respectively.

We are interested in learning a network of causal relations between interacting nodes. While such
a causal network forms a valid Bayesian network, the inverse relation does not hold: when we have
learned a Bayesian network from the data, the resulting graph does not necessarily represent the
correct causal graph. One reason for this discrepancy is the existence of unobserved nodes. When
we find a probabilistic dependence between two nodes, we cannot necessarily conclude that there
exists a causal interaction between them, as this dependence could have been brought about by a
common yet unobserved regulator. However, even under the assumption of complete observation
the inference of causal interaction networks is impeded by symmetries within so-called equivalence
classes, which consist of networks that yield the same evidence scores P (D|M). A simple example
are two conditionally dependent nodes, say A and B, where the two networks related to the two
possible directions of the edge, A→ B and A← B, are equivalent.

There are three ways to break the symmetries of the equivalence classes. One approach is to use
active interventions, like gene knockouts and over-expressions. When knocking out gene A affects
gene B, while knocking out gene B does not affect gene A, then A→ B will tend to have a higher
evidence than A ← B. For more details, see [107] and [DH18]. An alternative way to break the
symmetries, investigated in more detail in Section 6.3, is to use prior information. When genes A
and B are conditionally dependent, and we have prior knowledge that A is a transcription factor
that regulates genes in the functional category that B belongs to, then we will presumably favour
A→ B over A← B. To formalize this notion, we score networks by the posterior probability

P (M|D) ∝ P (D|M)P (M) (6.2)

where P (D|M) is the evidence, and P (M) is the prior distribution over network structures; the
latter distribution captures the biological knowledge that we have prior to measuring the data
D. While different graphs might have identical scores in light of the data, P (D|M), symmetries
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can be broken by the inclusion of prior knowledge, P (M), and these two sources of information
are systematically integrated into the posterior distribution P (M|D). A third approach is to use
temporal information, which intrinsically breaks the symmetry between cause and effect (as the
former has to precede the latter). Under the Markov assumption the process of unfolding the
network in time leads to a so-called dynamic Bayesian network (DBN), as illustrated in Figure 6.2.
This unfolding process also overcomes the acyclicity restriction of static Bayesian networks and
allows the modelling of feedback loops and recurrent structures.

The objective of inference is to find the network structure M that maximizes P (M|D). Unfortu-
nately, the number of structures increases super-exponentially with the number of nodes. Also, in
systems biology, where we aim to learn complex interaction patterns involving many components,
the amount of information from the data and the prior is usually not sufficient to render the dis-
tribution P (M|D) sharply peaked at a single graph. Instead, the distribution is usually diffusely
spread over a large set of networks. Summarizing this distribution by a single network would not be
appropriate. Instead, we aim to sample network structures from the posterior distribution P (M|D)
so as to obtain a typical collection of high-scoring networks and, thereby, capture intrinsic inference
uncertainty. Direct sampling from this distribution is usually intractable, though. Hence, we resort
to a Markov chain Monte Carlo (MCMC) scheme [90], which under fairly general regularity condi-
tions is theoretically guaranteed to converge to the posterior distribution of equation (6.2). Given
a network structureMold, a new network structureMnew is proposed from a proposal distribution
Q(Mnew|Mold), which is then rejected or accepted according to the standard Metropolis-Hastings
scheme [59] with the following acceptance probability:

A = min
{
P (D|Mnew)P (Mnew)
P (D|Mold)P (Mold)

Q(Mold|Mnew)
Q(Mnew|Mold)

, 1
}

(6.3)

The functional form of the proposal distribution Q(Mnew|Mold) depends on the chosen type of
proposal moves. For a derivation, see [DH1], Chapter 2. While edge-based operations are concep-
tually easy, the resulting changes in structures space are small and, consequently, convergence and
mixing of the Markov chains is usually poor. Together with Marco Grzegorczyk I have developed
a new proposal scheme, which enables larger changes in the network structure at high acceptance
probability. We have demonstrated that our modification leads to a considerable improvement in
the mixing and convergence of the Markov chains. The details can be found in [DH14].
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Figure 6.3: Elementary molecular biological processes. Two transcription factor dimers a2 and b2 bind to the
cis regulatory site rC in the promoter region upstream of a gene, influencing its rate of transcription. The transcribed
mRNA C is translated into protein c, which dimerizes into c2 to form a new active transcription factor that can bind
to other cis regulatory sites.

6.2 Assessing the Accuracy of Network Reconstruction

I have assessed the accuracy of gene regulatory network inference based on a simulation study
with a known true network and data-generating processes similar to those found in real biological
systems. My study, which is described in [DH23], was based on the regulatory network proposed by
Zak et al. [155], which is shown in Figure 6.4 and which contains several structures similar to those
reported in the literature, like a hysteretic oscillator [8], a genetic switch [47], as well as a ligand
binding mechanism that influences transcription. The elementary processes are shown in Figure 6.3
and are described by the following system of differential equations, which describe the processes
of transcription factor binding, transcription, translation, dimerization, mRNA degradation, and
protein degradation:

d

dt
[a2.rC] = λ+

a2.rC [a2][rC]− λ−a2.rC [a2.rC]

d

dt
[C] = λrC [rC] + λa2.rC [a2.rC] + λb2.rC [b2.rC]− λC [C]

d

dt
[c] = λCc[C]− λc[c],

d

dt
[c2] = λ+

cc[c]
2 − λ−cc[c2] (6.4)

Here, the λi are kinetic constants, available from the references in [155], t represents time, [.]
means concentration, a2.rC and b2.rC represent transcription factors a2 and b2 bound to the cis-
regulatory site rC, and the remaining symbols are explained in the caption of Figure 6.4. The
system of differential equations (6.4) is taken from chemical kinetics ([3], Chapter 28). Consider,
for instance, the formation and decay of a protein dimer: c + c ↔ c2. The forward reaction
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Figure 6.4: Realistic biological network composed of the elementary processes of Figure 6.3, taken from [155]
in a slightly modified form. Oscillating lines represent cis regulatory sites in the gene upstream regions (promoters),
mRNAs are symbolized by upper case letters in circles, proteins are shown by lower case letters in squares. Shaded
squares indicate active transcription factors, where in all but two cases this activation is effected by dimerization, and
in one case by ligand binding. The symbols + and − indicate whether a transcription factor acts as an activator or
inhibitor. The network contains several subnetworks reported in the biological literature. The subnetwork involving
mRNAs A and B is a hysteretic oscillator. A is translated into protein a, which is an active transcription factor that
activates the transcription of B. B is translated into protein b, which forms a dimer ab. This dimerization reduces
the amount of free transcription factors a, and oscillations result as a consequence of this negative feedback loop.
The subnetwork involving mRNAs C and D is a switch: each mRNA is translated into a transcription factor that
inhibits the transcription of the other mRNA, thereby switching the competing path “off”. Finally, the subnetwork
involving mRNA F is triggered by an external ligand, which is needed to form an active transcription factor dimer.

(formation) is second order, involving two monomers. Consequently, the time derivative of the
dimer concentration, d

dt [c2], is proportional to the square of the concentration of the monomer,
[c]2. The reverse reaction (decay) is first order, and d

dt [c2] is proportional to the concentration of
the dimer, [c2]. Both processes together are described by the second equation in the last row of
(6.4). The remaining equations can be explained similarly. The system of differential equations for
the whole regulatory network of Figure 6.4 is composed of these elementary equations, with three
additional but similar equations for ligand binding, ligand degradation, and heterodimerization
(a, b↔ ab). The resulting set of differential equations is stiff and needs to be integrated numerically
with a high-order adaptable step-size method (e.g. Runge–Kutta–Fehlberg). Note that except for
a, all transcription factors dimerize before they are active, that each gene has more than one rate
of transcription, depending on whether promoters are bound or unbound, and that the presence of
different time scales makes it representative of a real biological system and a suitable challenge for
the Bayesian network inference algorithm. In contrast to the work described in [155], the system
was augmented by adding 41 spurious, unconnected genes (giving a total of 50 genes), which were
up- and down-regulated at random.
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Figure 6.5: ROC curves for the realistic simulated data, averaged over three MCMC simulations. The
rows represent different sampling periods. Top row: Sampling over a long time interval of 4000 minutes, which
mainly covers the system in equilibrium. Bottom row: Restricting the sampling to a short 500-minute time interval
immediately after ligand injection, when the system is in a perturbed non-equilibrium state. The columns correspond
to different structure priors. Left column: maximum fan-in = 2; middle column: maximum fan-in = 3; right column:
maximum fan-in = 4. In each subfigure the sensitivity (proportion of recovered true edges) is plotted against the
complementary specificity (proportion of false edges). The thin, diagonal dashed line is the expected ROC curve of
a random predictor. The solid line shows the ROC curve obtained from gene expression data alone, while the dash-
dotted line shows the ROC curve obtained when including information about potential transcription factor binding
motifs in gene upstream sequences. See [DH23] for more details.

The first experiment followed closely the procedure in [155]. Ligand was injected for 10 minutes at a
rate of 105 molecules/minute at time 1000 minutes. Then, 12 data points were collected over 4000
minutes in equi-distant intervals. The second experiment adopted a sampling strategy different
from [155]. An analysis of the mRNA abundance levels reveals regular oscillations when the system
is in equilibrium. Such signals are known to have a low information content; consequently, it seems
to make better sense to focus on the time immediately after external perturbation, when the system
is in disequilibrium. The sampler therefore collected 12 data points over a shorter interval of only
500 minutes immediately after ligand injection, between times 1100 and 1600 minutes.

To learn the network structure, Bayesian networksMi were sampled from the posterior distribution
P (M|D) with MCMC. From a comparison between this sample, {Mi}, and the known true net-
work, one can estimate the accuracy of the inference procedure. Denote by P (eik|D) the posterior
probability of an edge eik between nodes i and k, which is given by the proportion of networks in
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the MCMC sample {Mi} that contain this edge. Let E(ρ) =
{
eik|P (eik|D) > ρ

}
denote the set of

all edges whose posterior probability exceeds a given threshold ρ ∈ [0, 1]. From this set we can com-
pute (1) the sensitivity, that is, the proportion of recovered true edges, and (2) the complementary
specificity, that is, the proportion of erroneously recovered spurious edges. To rephrase this: For
a given threshold ρ we count the number of true positive (TP ), false positive (FP ), true negative
(TN), and false negative (FN) edges. We then compute the sensitivity = TP/(TP + FN), the
specificity = TN/(TN+FP ), and the complementary specificity = 1-specificity = FP/(TN+FP ).
Rather than selecting an arbitrary value for the threshold ρ, we repeat this scoring procedure for
several different values of ρ ∈ [0, 1] and plot the ensuing sensitivity scores against the corresponding
complementary specificity scores. This gives the receiver operating characteristics (ROC) curves of
Figure 6.5. The diagonal dashed line indicates random expectation. A ROC curve following the
vertical and horizontal axes from [TP = 0, FP = 0] to [TP = 1, FP = 0] and [TP = 1, FP = 1]
indicates perfect prediction. In general, ROC curves are between these two extremes, with a larger
area under the curve (AUC) indicating a better performance.

The results are shown in Figure 6.5. A detailed analysis can be found in [DH23]. The main findings
can be summarized as follows. The ROC curves are never perfect, which indicates that the true
regulatory network cannot be learned in its entirety. On the other hand, the ROC curves are
always better than random expectation, which suggests that certain local network features can
be successfully learned, and that biological hypotheses can be assessed in a network-wide context.
The network reconstruction accuracy depends on the sampling scheme. As conjectured above,
sampling in disequilibrium after perturbation of the system by ligand injection leads to better ROC
curves than sampling in equilibrium. The results also improve with a restriction of the number of
potential regulators (fan-in restriction) and the inclusion of potential transcription factor binding
motifs in the gene upstream sequences. The latter findings provide an example of how the network
reconstruction accuracy can be boosted by the inclusion of biological prior knowledge. I will delve
into this important topic in more detail in the next section.

In a second related study with Adriano Werhli and Marco Grzegorczyk [DH18], we carried out a
comprehensive comparative evaluation of Bayesian networks, graphical Gaussian models (GGMs)
[126, 127], and relevance networks [21, 22]. While Bayesian networks clearly outperformed relevance
networks, in corroboration of Figure 6.1, we found that their performance was on a par with GGMs
when data from passive observations were used. Only when active interventions in the form of
gene knockouts or over-expressions were included, did Bayesian networks outperform GGMs. The
details of this study are available from [DH18].
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6.3 Bayesian Integration of Biological Prior Knowledge

The number of experimental conditions is usually limited for practical reasons. For instance, a
biologist will hardly be able to procure the funding for, say, a thousand microarray experiments,
and in the practical data analysis, we have to make do with a few dozen conditions. This sparsity of
data will usually lead to a diffuse posterior distribution in network structure space, if the posterior
distribution is dominated by the likelihood. A way to counteract this tendency is to include
informative prior knowledge, as described in the Introduction section. For instance, a biologist
aiming to infer regulatory networks in a crop plant, say barley, might want to include knowledge
about related regulatory networks in a model plant like Arabidopsis. The bulk of the analysis may
be based on gene expression profiles from microarray experiments, but we may have information
about transcription factor binding motifs in the promoters and upstream sequences of some genes,
which will give us prior cues about potential gene regulation patterns. It is certainly desirable
to include this prior knowledge in the analysis. However, it is also important to automatically
assess how useful this prior knowledge is. How confident are we that the over-representation of
certain sequence motifs in the promoter is indicative of genuine transcription factor binding? To
what extent is a signalling pathway in a model plant similar to corresponding pathways in crops,
and is there any corresponding pathway in the first place? We would therefore like to have a
mechanism in place that automatically trades off different sources of prior knowledge against each
other and against the data, so as to assess their relative merits. This was the objective of my work
with Adriano Werhli [DH13,DH16], where the aim was a systematic integration of biological prior
knowledge in the inference of gene regulatory networks by following the Bayesian paradigm.

6.3.1 Method

A network M is represented by a binary adjacency matrix, where each entry Mij can be either
0 or 1. A zero entry, Mij = 0, indicates the absence of an edge between node i and node j.
Conversely ifMij = 1 there is a directed edge from node i to node j. We define the biological prior
knowledge matrix B to be a matrix in which the entries Bij ∈ [0, 1] represent our knowledge about
interactions between nodes as follows: If entry Bij = 0.5, we do not have any prior knowledge
about the presence or absence of the directed edge between node i and node j. If 0 ≤ Bij < 0.5
we have prior evidence that the directed edge between node i and node j is absent. The evidence
is stronger as Bij is closer to 0. If 0.5 < Bij ≤ 1 we have prior evidence that the directed edge
pointing from node i to node j is present. The evidence is stronger as Bij is closer to 1.

Following an approach proposed by Imoto et al. [68] we define a function that measures the
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agreement between a given networkM and our biological prior knowledge:

E(M) =
N∑

i,j=1

|Bi,j −Mi,j | (6.5)

where N is the total number of nodes in the studied domain. Note that E is zero for a perfect
match between the prior knowledge B and the actual network structureM, while increasing values
of E indicate an increasing mismatch between B and M. We next define the prior distribution
over network structures M to take the form of a Gibbs distribution:

P (M|β) =
e−βE(M)

Z(β)
(6.6)

where E(M) was defined in (6.5) and corresponds to an ‘energy’ in statistical physics, β is a hy-
perparameter that corresponds to an inverse temperature, and the denominator is a normalizing
constant that is usually referred to as the partition function: Z(β) =

∑
M∈M e−βE(M). Note that

this summation extends over the set of all possible network structures, M. Since the number of
structures increases superexponentially with the number of nodes (see e.g. Chapter 2 in [DH1]), the
summation becomes soon intractable as N increases. For DBNs without intra-slice edges the com-
putational costs can be reduced to polynomial time complexity by exploiting intrinsic modularities
in the system, as shown in [DH16,DH42]. For static Bayesian networks the assumption of the same
modularities leads to a tractable expression for Z(β) that is an approximation and systematically
over-estimates the true value; see [DH16] for details. The hyperparameter β can be interpreted as
a factor that indicates the strength of the influence of the biological prior knowledge relative to the
data. For β → 0, the prior distribution defined in (6.6) becomes flat and uninformative about the
network structure. Conversely, for β → ∞, the prior distribution becomes sharply peaked at the
network structure with the smallest deviation from B.

The approach can easily be generalized to multiple sources of prior knowledge. To keep the notation
uncluttered, I restrict the exposition to two sources of prior knowledge; the extension to more
than two sources is straightforward. Assume that the biological prior knowledge stems from two
independent sources (e.g. TF binding motifs in the gene upstream sequences and pathways from
KEGG). This can be represented by two separate prior knowledge matrices Bk, k ∈ {1, 2}, each
satisfying the requirements laid out in the previous paragraphs. This gives us two ‘energy’ functions:

E1(M) =
N∑

i,j=1

∣∣B1
i,j −Mi,j

∣∣ ; E2(M) =
N∑

i,j=1

∣∣B2
i,j −Mi,j

∣∣ (6.7)

where each ‘energy’ is associated with its own hyperparameter βk. The prior probability of a
network M given the hyperparameters β1 and β2 is now defined as:

P (M|β1, β2) =
e−{β1E1(M)+β2E2(M)}

Z(β1, β2)
(6.8)
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Figure 6.6: Raf signalling pathway. The graph shows the Raf signalling network, taken from [123]. Nodes

represent proteins, edges represent interactions, and arrows indicate the direction of signal transduction.

where the partition function is given by Z(β1, β2) =
∑

M∈M e−{β1E1(M)+β2E2(M)}. Given a set of
transcriptional profiles D and our prior knowledge base B = {B1, B2}, the objective of Bayesian
inference is to determine the posterior distribution P (M, β1, β2|D, B). This distribution is analyt-
ically intractable; so we resort to MCMC to sample network structures M and hyperparameters
β1, β2 from it numerically. This approach makes use of the factorization

P (M, β1, β2|D, B) ∝ P (D,M, β1, β2, B) = P (D|M)P (M|β1, β2, B)P (β1, β2|B) (6.9)

where P (β1, β2|B) denotes the prior on the hyperparameters which, in the absence of genuine prior
knowledge, can be chosen uninformative. For full methodological and implementational details, see
[DH16].

6.3.2 Empirical evaluation on the Raf signalling pathway

In [DH16], we carried out a comprehensive evaluation of the proposed method on a variety of
synthetic and real data sets. As an illustration, I will present an application to the reconstruction
of a protein signal transduction network. Sachs et al. [123] applied intracellular multicolour flow
cytometry experiments to quantitatively measure protein concentrations. Data were collected after
a series of stimulatory cues and inhibitory interventions targeting specific proteins in the Raf
pathway. Raf is a critical signalling protein involved in regulating cellular proliferation in human
immune system cells. The dysregulation of the Raf pathway is implicated in carcinogenesis, and
this pathway has therefore been extensively studied in the literature [35, 123]; see Figure 6.6 for
a representation of the gold-standard network from [123]. Note that the number of experimental
replications for cytometry data substantially exceeds that of currently available gene expression data
from microarrays. Our objective was to use the cytometry data as a proxy to assess the gene network
reconstruction accuracy that one can expect to obtain from microarray experiments, drawing on the
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Figure 6.7: Inferring hyperparameters from the cytometry data of the Raf pathway. Panel (a): The

horizontal axis represents the value of β1, the hyperparameter associated with the prior knowledge from KEGG. The

vertical axis represents the area under the ROC curve (AUC) for the undirected graph evaluation (UGE). The results

for the directed graph evaluation (DGE) were similar. The graph plotted against the horizontal axis shows the mean

AUC score for fixed values of β1, obtained by sampling network structures from the posterior distribution with MCMC.

The results were averaged over five data sets of 100 protein concentrations each, independently sampled from the

observational cytometry data of Sachs et al. [123]. The error bars show the respective standard deviations. The graph

plotted against the vertical axis shows trace plots of β1 obtained by approximately sampling these values from the

posterior distribution with MCMC. Panel (b) shows the corresponding posterior probability densities, estimated from

the MCMC trajectories using a Parzen estimator with a Gaussian kernel. The solid line refers to the hyperparameter

associated with the prior knowledge extracted from KEGG. The dashed line refers to random and hence vacuous

prior knowledge. The data, on which the inference was based, consisted of 100 concentrations of the 11 proteins in

the Raf pathway, subsampled from the observational cytometry data of Sachs et al. [123].

fact that we have a fairly reliable gold standard for the Raf network structure (see Figure 6.6). We
therefore downsampled the data to a sample size representative of current microarray experiments
(100 exemplars). In our experiments we used 5 data sets with 100 measurements each, obtained
by randomly sampling subsets from the original observational data of Sachs et al. [123].1

We extracted biological prior knowledge from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways database [71, 72, 73]. KEGG pathways represent current knowledge of the
molecular interaction and reaction networks related to metabolism, other cellular processes, and
human diseases.2 From these pathways, we computed the prior knowledge matrix, introduced in

1Details about the standardization of the data can be found [DH18].
2As KEGG contains different pathways for different diseases, molecular interactions and types of metabolism, it

is possible to find the same pair of genes (I use the term “gene” generically for all interacting nodes in the network;
this may include proteins encoded by the respective genes) in more than one pathway. We therefore extracted all
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Figure 6.8: Reconstruction of the Raf signalling pathway with different machine learning methods.

The figure evaluates the accuracy of inferring the Raf signalling pathway from cytometry data and prior information

from KEGG. Two evaluation criteria were used. The left panel shows the results in terms of the area under the

ROC curve (AUC scores), while the right panel shows the number of predicted true positive (TP) edges for a fixed

number of 5 spurious edges. Each evaluation was carried out twice: with and without taking the edge direction

into consideration (UGE: undirected graph evaluation, DGE: directed graph evaluation). Four machine learning

methods were compared: Bayesian networks without prior knowledge (‘BNs’), graphical Gaussian models without

prior knowledge (‘GGMs’), Bayesian networks with prior knowledge from KEGG (‘BN-Prior’), and prior knowledge

from KEGG only (‘Only Prior’). In the latter case, the elements of the prior knowledge matrix were computed from

equation (6.10). The histogram bars represent the mean values obtained by averaging the results over five data sets of

100 protein concentrations each, independently sampled from the observational cytometry data of Sachs et al. [123].

The error bars show the respective standard deviations.
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Subsection 6.3.1, as follows. Define by Uij the total number of times a pair of genes i and j appears
in a pathway, and by uij the number of times the genes are connected by a (directed) edge in the
KEGG pathway. The elements Bij of the prior knowledge matrix are then defined by

Bij =
uij

Uij
(6.10)

If a pair of genes is not found in any of the KEGG pathways, we set the respective prior association
to Bij = 0.5, implying that we have no prior information about this relationship.

The objective of the empirical evaluation in [DH16] was to assess the viability of the Bayesian
inference scheme and to estimate by how much the network reconstruction accuracy improves as
a consequence of combining the (down-sampled) cytometry data with prior knowledge from the
KEGG pathway database. To this end, we compared the results obtained with the proposed
Bayesian model for the integration of biological prior knowledge, with Bayesian networks (BNs)
and graphical Gaussian models (GGMs) that were trained without the inclusion of prior knowledge.
The latter were applied as described in [127]. Full details of the methodologies, simulations and
comparative evaluation are available from [DH16].

There are three interesting questions that we wanted to answer: (1) Can the proposed approach
discriminate between useful and vacuous prior knowledge? (2) Do we obtain the optimal trade-off
between prior knowledge and data? (3) Do we get an improvement in the network reconstruction
accuracy?

Question 1: Can the proposed approach discriminate between useful and vacuous prior
knowledge?

We wanted to test whether the proposed Bayesian inference method can discriminate between
different sources of prior knowledge and automatically assess their relative merits. To this end, we
complemented the prior knowledge from the KEGG pathway database with a second source of prior
knowledge, for which the entries in the prior knowledge matrix were chosen at random. Hence,
this second source of prior knowledge is vacuous and does not include any useful information for
reconstructing the regulatory network. Figure 6.7(b) shows the estimated posterior distributions
of two hyperparameters: β1, the hyperparameter associated with the prior knowledge extracted
from KEGG; and β2, the hyperparameter associated with the vacuous source of prior knowledge.
It is seen that the hyperparameter associated with KEGG, β1, takes on substantially larger values
than the hyperparameter associated with the vacuous prior information, β2. This suggests that
the proposed method successfully discriminates between the two sources of prior information and
effectively suppresses the influence of the vacuous one.

pathways from KEGG that contained at least one pair of the 11 proteins/phospholipids included in the Raf pathway.
We found 20 pathways that satisfied this condition.
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Question 2: Do we obtain the optimal trade-off between prior knowledge and data?

While the study described in the previous paragraph suggests that the proposed Bayesian inference
scheme succeeds in suppressing irrelevant prior knowledge, we were curious to see whether the
hyperparameter associated with the relevant source of prior knowledge (from KEGG) was optimally
inferred. To this end, we chose a large set of fixed values for β1, while keeping the hyperparameter
associated with the vacuous prior information fixed at zero: β2 = 0. For each fixed value of
β1, we sampled Bayesian network structures from the posterior distribution with MCMC, and
evaluated the network reconstruction accuracy using the evaluation criteria described below. We
compared these results with the proposed Bayesian inference scheme, where both hyperparameters
and networks are simultaneously sampled from the posterior distribution with MCMC. The results
are shown in Figure 6.7(a). They suggest that the inferred values of β1 are close to those that
achieve the best network reconstruction accuracy, and that the approximation of the partition
function, as briefly described in Section 6.3.1, leads only to a small bias.

Question 3: Do we get an improvement in the network reconstruction accuracy?

While the true network is a directed graph, our reconstruction methods may lead to undirected,
directed, or partially directed graphs3. To assess the performance of these methods, we applied two
different criteria. The first approach, referred to as the undirected graph evaluation (UGE), discards
the information about the edge directions altogether. To this end, the original and learned networks
are replaced by their skeletons, where the skeleton is defined as the network in which two nodes are
connected by an undirected edge whenever they are connected by any type of edge. The second
approach, referred to as the directed graph evaluation (DGE), compares the predicted network with
the original directed graph. A predicted undirected edge is interpreted as the superposition of two
directed edges, pointing in opposite directions. The application of any of the machine learning
methods considered in our study leads to a matrix of scores associated with the edges in a network.
For Bayesian networks sampled from the posterior distribution with MCMC, these scores are the
marginal posterior probabilities of the edges. For GGMs, these are partial correlation coefficients.
Both scores define a ranking of the edges. This ranking defines a receiver operating characteristics
(ROC) curve, where the relative number of true positive (TP) edges is plotted against the relative
number of false positive (FP) edges; see Section 6.2 for details. We proceeded with two different
evaluation procedures. The first approach is based on integrating the ROC curve so as to obtain
the area under the curve (AUC), with larger areas indicating, overall, a better performance. The
second approach is based on the selection of an arbitrary threshold on the edge scores, from which
a specific network prediction is obtained. In [DH16], we set the threshold such that it led to a fixed

3GGMs are undirected graphs. While Bayesian networks are, in principle, directed graphs, partially directed
graphs may result as a consequence of equivalence classes, which were briefly mentioned in Section 6.1. For more
details, see e.g. Chapter 2 in [DH1].
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count of 5 FPs. From the predicted network, we determined the number of correctly predicted
(TP) edges, and took this score as our second figure of merit.

The results are shown in Figure 6.8. The proposed Bayesian inference scheme clearly outperforms
the methods that do not include the prior knowledge from the KEGG database (Bayesian networks
and GGMs). It also clearly outperforms the prediction that is solely based on the KEGG pathways
alone without taking account of the cytometry data. The improvement is significant for all four
evaluation criteria: AUC and TP scores for both directed (DGE) and undirected (UGE) graph
evaluations. This suggests that the network reconstruction accuracy can be substantially improved
by systematically integrating expression data with prior knowledge about pathways, as extracted
from the literature or databases like KEGG.

Conclusion

Our simulation study gave a clear affirmative response to all three questions, suggesting that the
proposed method adds an important tool to the kit of computational systems biology.

6.4 Active Pathways under Different Experimental Conditions

The assumption so far has been that the molecular biological system of interest can be characterized
by a unique regulatory network. What we are actually aiming to infer, though, are the active parts
of this network, which may differ under different experimental conditions. To illustrate this point,
consider a transcription factor that potentially upregulates a group of genes further downstream
in the regulatory chain. If the experimental conditions are chosen such that the gene coding for
this transcription factor is never expressed itself, then the respective subnetwork will never be
activated, and hence cannot be inferred from the data. When aiming to infer regulatory networks
related to an organism’s immune system, we would expect certain pathways to be activated only
upon infection, and remaining invisible when gene expression profiles are only taken in the healthy
state. In fact, some preliminary analysis in [150] related to the challenging of macrophages with
interferon gamma (IFNγ) and viral infection has revealed differences in the active pathways under
the conditions of viral infection, IFNγ treatment, and viral infection plus IFNγ treatment. This
suggests that a regulatory network is not an immutable entity, but may vary in response to changes
in the experimental and/or environmental conditions.

When aiming to reconstruct a network from gene expression profiles taken under different experi-
mental conditions, there seem to be two principled approaches we may pursue. The first is to ignore
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the changes in the experimental conditions altogether and merge the data into one monolithic set.
The problem with this approach is that it inevitably blurs the differences between the different con-
ditions and thereby obscures the biological insight we are aiming to gain; for instance, we would not
be able to tell the difference between the state of a network in infected, healthy, and IFNγ-treated
cells. The second approach is to keep the data obtained under different conditions separate, and
to infer separate regulatory networks active under these different conditions. While this approach
has the potential to reveal the differences between the regulatory networks in different states, e.g.
infection versus treatment, it will almost inevitably result in a considerable reduction in statistical
power and reconstruction accuracy. Current postgenomic data sets are usually sparse, e.g. the
number of microarray experiments biologists can afford to carry out is usually limited to the order
of a few dozen, which compromises the extent to which networks can be reconstructed. Breaking
a sparse data set up into smaller units will inevitably aggravate this situation and increase the
uncertainty about inferred network structures.

In my work with Adriano Werhli described in [DH13], we aimed to pursue a compromise between
the two extreme procedures described above. The motivation was given by the insight gained from
an earlier study described in Chapter 2 in [150]. Although we found differences between the active
pathways under the different conditions of infection and treatment with IFNγ, the networks shared
considerable features they had in common. Our conjecture was that this holds in general, and
that a cell’s regulatory networks, while potentially transitioning between different active states in
response to different external cues, share substantial features owing to a common generic network
architecture. Our objective was to formulate this proposition mathematically so as to integrate it
into the probabilistic modelling process.

As it turns out, this objective can be achieved by a modification of the probabilistic model described
in the previous section, Section 6.3. Recall that the objective of Section 6.3 was the integration of
explicit prior knowledge into the inference scheme by softly constraining the inferred network to be
similar to the a priori known network. In modification of this scheme, we propose in [DH13] learning
separate regulatory networks from disjunct gene expression data, but tying these networks together
by softly constraining them to be similar to a shared underlying generic network. This approach
overcomes the rigidity of the first scenario described above, which would obscure the differences
between the network states in different experimental conditions. By sharing information between
the different network states, the problem of the second scenario described above should be averted,
that is, the statistical power and accuracy of the reconstruction should be considerably enhanced.

6.4.1 Method

In order to integrate information from I different data sets (D1 . . .DI) obtained under different
experimental conditions we use the probabilistic graphical model presented in Figure 6.9. Each

93



M
1

M
2β

2
β

1

D
1

D
2

M*

M
Iβ

I

D
I

. . .

Figure 6.9: Probabilistic graphical model for learning active subnetworks under different experimental

conditions. (D1 . . .DI) are data sets obtained under different experimental conditions. Each of these data sets is

associated with its own hyperparameter (β1, . . . , βI) and network structure (M1, . . . ,MI). The hypernetwork M?

leads to a coupling between the individual network structures (M1, . . . ,MI) and encourages them to be similar.

data set (D1 . . .DI) is associated with its own hyperparameter (β1, . . . , βI) and network structure
(M1, . . . ,MI). The latent graph M?, which is not directly associated with the data, leads to
a coupling between the individual network structures (M1, . . . ,MI) and encourages them to be
similar. Note that Figure 6.9 constitutes a hierarchical Bayesian model, in which the βis and M?

correspond to hyperparameters that determine the prior distribution on the network structures
Mis. Further note that M? is not just a variable, but a complex entity representing a whole
network itself. I shall therefore refer toM? as the hypernetwork.

The joint probability factorizes according to the independence relations defined by the probabilistic
graphical model of Figure 6.9 as follows:

P (M1, . . . ,MI ,D1 . . .DI , β1, . . . , βI ,M?) = P (M?)
I∏

i=1

P (Di|Mi)P (Mi|βi,M?)P (βi) (6.11)

where the prior distribution over network structures, P (Mi|βi,M?), takes the form of a Gibbs
distribution:

P (Mi|βi,M?) =
e−βi(|Mi−M?|)

Z(βi,M?)
. (6.12)

The term |Mi −M?| measures the similarity between the graphs Mi and M?, for instance in
terms of the Hamming distance, i.e. the number of different edges. This scheme introduces a cou-
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pling between the individual networks Mi: deviations between Mi and M? are penalized, which
implies an indirect penalty for deviations between Mi and Mk, i 6= k. The hyperparameter βi

can be interpreted as a factor that indicates the strength of the influence of the hypernetworkM?

relative to the data. For βi → 0, the prior distribution defined in equation (6.12) becomes flat
and uninformative about the network structure. Conversely, for βi → ∞, the prior distribution
becomes sharply peaked, forcing the network structure Mi to be equal to the hypernetwork M?.
The denominator in equation (6.12) is a normalizing constant, also known as the partition func-
tion: Z(βi,M?) =

∑
Mi∈M e−βi(|Mi−M?|), where M is the set of all valid network structures. Its

computation was already briefly discussed in the previous section, Subsection 6.3.1. For a com-
prehensive mathematical treatment, see [DH13,DH16]. The objective of Bayesian inference is to
infer the posterior distribution of the networks associated with the different structures, the hyper-
network and the hyperparameters, P (M1, . . . ,MI , β1, . . . , βI ,M?|D1 . . .DI). This is analytically
intractable; so we exploit the factorization inherent in (6.11) and set up an MCMC simulation to
approximately generate a sample from the posterior distribution. The mathematical details are
presented in [DH13].

6.4.2 Findings

To simulate active pathways under different experimental conditions, we combined five individual
data sets as follows. Three of the data sets were generated from the gold-standard RAF regulatory
network, shown in Figure 6.6. A fourth data set was generated from a slightly modified version of
this network, in which the following four edges had been deleted: PKC → RAF, PKC → PKA,
PKA → MEK, and PLCg → PIP2. The deletion of these edges corresponds to changes in the
active subpathways under different external conditions, as described above. As a fifth data set,
we included a purely random data set. This corresponds to either a drastic change of the external
conditions that deactivates the whole pathway, or to a flawed experiment that has corrupted the
data. We wanted to investigate whether the proposed method succeeds in identifying this outlying
data set and prevents it from adversely affecting the overall inference. We were also interested in
whether the proposed method can distinguish between the data from the gold-standard and the
modified RAF regulatory network. A description of the generation of the synthetic data is given
in [DH13]; each subset contained 100 exemplars. For the cytometry data, we took four subsets
of unintervened data, randomly selected from the data in [123] and pre-processed as described in
[DH18]. Each subset contained 20 measurements. To these data sets we added a fifth data set
of equal size, consisting of pure noise. The results are shown in Figure 6.10. The random data
set deliberately included with the proper data is clearly detected. The hyperparameter associated
with the random data is automatically set to very small values; this suggests that the proposed
Bayesian coupling scheme is effective in switching off the influence of corrupted data. A data
set generated from the modified network structure is also automatically detected. The associated
hyperparameter is sampled from a distribution placed between those associated with the random
data and the data generated from the unmodified network, successfully distinguishing it from both.
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Figure 6.10: Integrating different experimental conditions. Panel (a) shows the posterior distributions of

the hyperparameters β1, . . . , β5 for the simulated data, estimated with a kernel estimator applied to the samples

obtained from the MCMC simulations. The distribution of β1, which is associated with the random data, is centred

on small values close to zero. The hyperparameters β2, β3 and β4, which are associated with the data sets generated

from the true network, have a broad distribution reaching up to very large values. The distribution of β5, which is

associated with the modified network, is expected to lie between these two distributions, and this is in fact borne

out in our simulations. The histograms in Panels (b-c) show a comparison of the network reconstruction accuracy in

terms of the areas under the ROC curves (AUC scores) for three different methods: the monolithic approach (black),

the uncoupled approach (light grey), and the proposed Bayesian coupling scheme (dark grey); see the main text for

further details. The two panels correspond to different data sets: simulated data (Panel (b)), with a known gold

standard, and protein concentrations from cytometry experiments (Panel (c)), with the network in Figure 6.6 taken

as the gold standard. Each panel contains two histograms, evaluating only the reconstruction of the skeleton of the

graph (UGE score) and additionally taking the edge direction into account (DGE score).

In terms of network reconstruction accuracy, the proposed Bayesian coupling scheme consistently
outperforms the two competing approaches. The performance difference is clearly evident on the
simulated data, where the individual data sets correspond to different activation levels of the
regulatory subpathways (owing to different settings of the interaction parameters). But even for
the cytometry data, where we only added one corrupted data set to four data sets obtained under
homogeneous experimental conditions, the improvement is noticeable.

6.5 Non-Stationary Processes and Time-Varying Networks

In the previous section I have discussed the inference of network structures associated with dif-
ferent experimental or exogenous conditions. In the present chapter I will describe methods for
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Figure 6.11: Life cycle of Drosophila. The figure shows the principal morphogenic stages during the life cycle

of Drosophila melanogaster. Image taken from http://www.hoxfulmonsters.com.

inferring time-varying network structures during an evolutionary process. Consider the life cycle
of Drosophila melanogaster, shown in Figure 6.11. It is certainly suboptimal to assume that the
gene regulatory networks related to, say, wing muscle control are fixed and immutable during the
organism’s life cycle. What we need is a method that allows for changes in the regulatory network
structure. Given that time series of high-throughput gene expression profiles are typically sparse,
we want to prevent overfitting with a regularization scheme that incorporates our prior knowledge
about the evolutionary nature of the process. Stated differently, we want a method that penalizes
differences between network structures that are associated with adjacent time series segments. We
also would like to generalize the method of the previous section and learn the number and location
of the changepoints automatically from the data in an unsupervised manner. This was the objective
of my work in [DH41,DH42], which I shall summarize in the present section.

6.5.1 Method

The standard assumption underlying dynamic Bayesian networks (DBNs), depicted in Figure 6.2,
is that time-series have been generated from a homogeneous Markov process. To address this
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(a) Hard Node Coupling (b) Soft Node Coupling

Figure 6.12: Hierarchical Bayesian models for inter-segment and inter-node information coupling.

Left panel: Hard coupling between nodes, with a common hyperparameter Θ regulating the strength of the coupling

between structures associated with adjacent segments, Mh
i and Mh+1

i . Right panel: Soft coupling between nodes,

with node-specific hyperparameters Θi coupled via level2-hyperparameters Ψ. The prior distribution of Ψ depends

itself on some higher-level hyperparameters Ω. The changepoints are node-specific and divide the gene expression

time series into segments. Dh
i denotes the data pertinent to node i in segment h. Full mathematical details of the

model are presented in [DH41].

limitation, Lèbre et al. [83, 84] introduced a Bayesian multiple changepoint process, as described
in Chapter 4 and illustrated in Figure 4.4, by which gene expression time series are divided into
segments in an unsupervised manner. Different time series segments are treated as independent
and are associated with separate network structures and parameters. A truncated Poisson prior is
imposed on the number of changepoints. An RJMCMC [54] scheme based on changepoint birth
and death moves is then applied to sample the number of changepoints, their location and the
network structures associated with the different segments from the posterior distribution. The
high flexibility of this approach can cause problems when applied to short time series with low
numbers of measurements, as typically available from high-throughput experiments in systems
biology, because it can lead to overfitting or inflated inference uncertainty.

In my joint work with Frank Dondelinger and Sophie Lèbre [DH41,DH42], I have addressed this
shortcoming by introducing the concept of information sharing from the previous section. Due to
the different nature of the data – a non-stationary process evolving in time – the central coupling
depicted in Figure 6.9 is superseded by sequential coupling. Rather than encouraging all network
structures to be similar to a common unknown hypernetwork, as in Figure 6.9, similarity is en-
couraged to hold for two network structures associated with adjacent time series segments. An
illustration is given in Figure 6.12. We modified the prior from the previous section to allow for
the fact that we are dealing with dynamic rather than static Bayesian networks. We compared two
functional forms of the prior – an exponential versus a binomial distribution – and two coupling
schemes: hard versus soft coupling, as illustrated in Figure 6.12. The coupling strengths depend
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on various hyperparameters, which are organized via a hierarchical Bayesian model. Inference
was carried out following the Bayesian paradigm, sampling changepoints, network structures and
hyperparameters from the posterior distribution with RJMCMC. Full methodological details are
given in [DH41,DH42].

6.5.2 Findings

Morphogenesis in Drosophila melanogaster

We applied our methods to a gene expression time series for eleven genes involved in the muscle
development of Drosophila melanogaster [2]. The microarray data measured gene expression levels
during all four major stages of morphogenesis: embryo, larva, pupa and adult. We investigated
whether our methods were able to infer the correct changepoints corresponding to the known tran-
sitions between stages. Figure 6.13(a) shows the posterior probabilities of inferred changepoints
obtained with a non-homogeneous DBN without information sharing [83, 84], while Figure 6.13(c)
shows the posterior probabilities inferred with the information sharing methods. For comparison, we
applied TESLA, a method based on L1-penalized regression proposed in [1] (Figure 6.13(b)). Our
non-homogeneous DBNs are generally more successful than TESLA, in that they recover change-
points for all three transitions (embryo→ larva, larva→ pupa, and pupa→ adult). Figure 6.13(b)
indicates that the last transition, pupa → adult, is less clearly detected with TESLA, and it is
missing in the related work of Robinson and Hartemink [118]. Both our method as well as TESLA
detect additional transitions during the embryo stage, which are missing in [118]. We would argue
that a complex gene regulatory network is unlikely to transition into a new morphogenic phase all
at once, and some pathways might have to undergo activational changes earlier in preparation for
the morphogenic transition. As such, it is not implausible that additional transitions at the gene
regulatory network level occur. However, a failure to detect known morphogenic transitions can
clearly be seen as a shortcoming of a method, and on these grounds our model appears to outper-
form the two alternative ones. We note that the main effect of information sharing is to reduce
the size of the smaller peaks, while keeping the three most salient peaks (corresponding to larva →
pupa, and pupa → adult, and an extra transition in the embryo phase). This reflects the fact that
these changepoints are associated with significant changes in network structure, and adds to the
interpretability of the results. The drawback is that the third morphological transition (embryo →
larva) is less pronounced.

Reconstruction of a synthetic gene regulatory network in Saccharomyces cerevisiae

The highly topical field of synthetic biology enables biologists to design known gene regulatory
networks in living cells. In the work described in [24], a synthetic regulatory network of 5 genes
was constructed in Saccharomyces cerevisiae (yeast), and gene expression time series were measured
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Figure 6.13: Changepoints inferred on gene expression data related to morphogenesis in Drosophila
melanogaster, and synthetic biology in Saccharomyces cerevisiae (yeast). All figures obtained from DBNs
show the posterior probability of a changepoint occurring for any node at a given time plotted against time. Panel a:
Changepoints for Drosophila, obtained with a non-homogeneous DBN without information sharing, as proposed in
[83, 84]. Panel b: TESLA, L1-norm of the difference of the regression parameter vectors associated with two adjacent
time points plotted against time. Panel c: Changepoints for Drosophila inferred using the non-homogeneous DBNs
with information sharing, as proposed in [DH41]. Panel d: Changepoints for the synthetic yeast strain, inferred using
non-homogeneous DBNs. Four schemes are compared. HetDBN-0: no coupling. HetDBN-Exp: hard coupling based
on an exponential prior. HetDBN-Bino1: hard coupling based on a binomial prior. HetDBN-Bino2: soft coupling
based on a binomial prior. The notion of hard versus soft coupling is illustrated in Figure 6.12. See [DH41] for further
methodological details. In Panels a-c, the vertical dotted lines indicate the three morphogenic transitions, while in
Panel d the line indicates the boundary between “switch on” and “switch off” data.
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Figure 6.14: Reconstruction of a known gene regulatory network from synthetic biology in Saccha-
romyces cerevisiae. The network was reconstructed from two gene expression time series obtained with RT-PCR
in two experimental conditions, reflecting the switch in the carbon source from galactose (“switch on”) to glucose
(“switch off”). For details, see [24]. Different information sharing and network coupling schemes, proposed in [DH41],
were compared. HetDBN-0: no coupling. HetDBN-Exp: hard coupling based on an exponential prior. HetDBN-
Bino1: hard coupling based on a binomial prior. HetDBN-Bino2: soft coupling based on a binomial prior. The
notion of hard versus soft coupling is illustrated in Figure 6.12. For further methodological details, see [DH41]. The
reconstruction accuracy is shown in terms of precision (vertical axis) - recall (horizontal axis) curves. Results were
averaged over 10 independent MCMC simulations. The average areas under the PR curves, averaged over both phases
(“switch on and off”), are as follows. HetDBN-0= 0.70, HetDBN-Exp= 0.77, HetDBN-Bino1= 0.75, HetDBN-Bino2=
0.75. For comparison, fixed precision/recall scores are shown for two state-of-the-art methods reported in [24]: Banjo,
a conventional DBN, and TSNI, a method based ordinary differential equations (ODEs).

with RT-PCR for 16 and 21 time points under two experimental conditions, related to the carbon
source: galactose (“switch on”) and glucose (“switch off”). The authors tried to reconstruct the
known gold-standard network from these time series with two established state-of-the-art methods
from computational systems biology, one based on ordinary differential equations (ODEs), called
TSNI, the other based on conventional DBNs, called Banjo; see [24] for details. Both methods are
optimization-based and output a single network. By comparison with the known gold standard,
the authors obtained the precision (proportion of predicted interactions that are correct) and recall
(proportion of predicted true interactions) scores. In our study, we merged the time series from
the two experimental conditions under exclusion of the boundary point4, and applied the four
non-homogeneous DBNs described before. Figure 6.13(d) shows the inferred marginal posterior
probability of potential changepoints. The most significant changepoint is at the boundary between
“switch on” and “switch off” data, confirming that the known true changepoint is consistently
identified. The biological mechanism behind the other peaks is not known, and they are potentially
spurious. Interestingly, the application of the proposed information-coupling schemes reduces the
height of these peaks, with the binomial models having a stronger effect than the exponential one.

As we pursue a Bayesian inference scheme, we also obtain a ranking of the potential gene interactions
in terms of their marginal posterior probabilities. From this ranking we computed the precision-

4When merging two time series (x1, . . . , xm) and (y1, . . . , yn), only the pairs xi → xj and yi → yj are presented
to the DBN, while the pair xm → y1 is excluded due to the obvious discontinuity.
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Figure 6.15: State space graph and corresponding dynamic Bayesian network. Left: Recurrent state
space graph containing two nodes. Node X has a recurrent feedback loop and acts as a regulator of node Y . Right:
The same graph unfolded in time. Compare with Figure 6.2.

recall (PR) curves [31] shown in Figure 6.14. Note that PR curves have recently become popular
as an alternative to ROC curves, which I have discussed in Section 6.2, as they have certain
methodological advantages; see the discussion in [31]. Our study shows that non-homogeneous
DBNs with information sharing outperform Banjo and TSNI both in the “switch on” and the
“switch off” phase. They also perform better than HetDBN-0 on the “switch off” data, but are
slightly worse on the “switch on” data. Note that the reconstruction accuracy on the “switch
off” data is generally poorer than on the “switch on” data [24]. Our results are thus plausible,
suggesting that information sharing boosts the reconstruction accuracy on the poorer time series
segment at the cost of a degraded performance on the stronger one. This effect is more pronounced
for the exponential prior than for the binomial one, indicating a tighter coupling. The average
areas under the PR curves, averaged over both phases (“switch on and off”), are shown in the
caption of Figure 6.14. They show that the overall effect of information sharing is a performance
improvement.

6.6 Modelling Nonlinear Regulation

Feedback loops and recurrent structures are essential to the regulation and stable control of complex
biological systems. As discussed in Section 6.1 and illustrated in Figure 6.2, the application of
dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback
loops can be learned. However, in my joint work with Marco Grzegorczyk [DH4,DH45] I showed
that the widely applied linear model (BGe score, discussed in Section 6.1) is susceptible to incurring
spurious feedback loops, which are a consequence of nonlinear regulation and autocorrelation in
the data. We have propose a nonlinear generalization of this model, described below, and we have
demonstrated that this approach successfully represses spurious feedback loops.

When the objective is to infer regulatory networks from time series, as is typically the case in
systems biology, the restriction of the model to linear processes can result in the prediction of
spurious feedback loops. Consider the simple example shown in Figure 6.15. The graph shows two
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interacting nodes. Node X is a regulator of node Y , and it also has a regulatory feedback loop
acting back on itself. Node Y is regulated by node X, but does not contain a feedback loop. The
figure shows both the state space representation, i.e. the recurrent graph, and the corresponding
dynamic Bayesian network. Note that the latter is a valid DAG obtained by the standard procedure
of unfolding the state space graph in time, as illustrated in Figure 6.2. First assume that the data
generation processes are linear and hence consistent with the BGe model assumption, e.g.:

X(t+ 1) = X(t) + c+ σx · φX(t); Y (t+ 1) = w ·X(t) +m+ σy · φY (t) (6.13)

where w,m, c, σx, σy are constants, and φ.(.) are iid normally distributed random variables. Under
fairly general regularity conditions, the marginal likelihood and, hence, the BGe score is a consistent
estimator. This implies that the correct model structure will be learned as T →∞, where T is the
data set size. Next, consider the scenario of a nonlinear regulatory influence that X exerts on Y :

X(t+ 1) = X(t) + c+ σx · φX(t); Y (t+ 1) = f(X(t)) + σy · φY (t) (6.14)

for some nonlinear function f(.). This nonlinear function cannot be modelled with a linear Bayesian
network based on the BGe model. Consequently, the prediction of Y (t+1) from X(t) will tend to be
poor. Note that for sufficiently small noise levels, the Y (t)’s will exhibit a strong autocorrelation, by
virtue of the autocorrelation of the X(t)’s, and the regulatory influence of X(t) on Y (t+ 1). If the
latter regulatory influence cannot be learned owing to the linear restriction of our model, the next
best explanation is a direct modelling of the autocorrelation between the Y (t)’s themselves. This
autocorrelation corresponds to a feedback loop of Y acting back on itself in the state-space graph,
or, equivalently, an edge from Y (t) to Y (t+ 1) in the dynamic Bayesian network; see Figure 6.15.
The linear restriction of the Bayesian network model may therefore result in the prediction of
spurious feedback loops and, hence, to the reconstruction of wrong network structures. Ruling out
feedback loops altogether will not provide a sufficient remedy for this problem, as some nodes – X in
the example above – will exhibit regulatory feedback loops (e.g. in molecular biology: transcription
factors regulating their own transcription), and it is generally not known in advance where these
nodes are.

In my work with Marco Grzegorczyk, we proposed and investigated a series of methods. The model
in [DH12] is based on a mixture model, using latent variables to assign individual measurements to
different classes. The practical inference follows the Bayesian paradigm and samples the network
structure, the number of classes and the assignment of latent variables from the posterior distribu-
tion with MCMC, using the allocation sampler of Nobile and Fearnside [102] as an alternative to
RJMCMC [54]. In [DH3,DH4,DH44,DH45], we increased the flexibility of the model by introduc-
ing different allocations for different nodes, so as to effectively approximate nonlinear regulatory
processes by piecewise linear ones. However, we changed the assignment of data points to mixture
components from a free allocation to a changepoint process. This effectively reduces the complexity
of the latent variable space from exponential to polynomial complexity and incorporates our prior
belief that, in a time series, adjacent time points are likely to be assigned to the same component.
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(b) Non-homogeneous DBN

Figure 6.16: Marginal edge posterior probabilities for the synthetic network. Both panels are laid out as
matrices, whose cells correspond to standard deviations σX and σY of the noise in X and Y . All histograms show
averages (means/standard deviations) from 20 independent data instantiations. The histograms show the posterior
probabilities of the edges in the simple network of Figure 6.15, as obtained with a standard DBN using the BGe
score (a) and the non-homogeneous DBN proposed in [DH4,DH44,DH45] (b). Each histogram contains 4 bars, which
represent the average posterior probabilities of the 4 possible edges. Left: self-loop X → X (true); centre left:
X → Y (true); centre right: self-loop Y → Y (false); right: Y → X (false). It is seen that the conventional linear
homogeneous DBN (BGe score) has a high propensity for learning the spurious feedback loop Y → Y , while the
non-homogeneous DBN tends to learn an increased posterior probability of the correct edge X → Y (centre left
bars).

In [DH6,DH7], we compared these two approaches systematically: the multiple changepoint process
versus the free allocation mixture model. Conceptually, the former aims to relax the homogeneity
assumption of DBNs, while the latter is more flexible and, in principle, more adequate for modelling
nonlinear processes. However, in our study we discuss a potential theoretical disadvantage of
the latter approach. In an empirical evaluation, we show that a model based on the multiple
changepoint process achieves a systematically better performance than the free allocation model
when inferring non-stationary gene regulatory processes from simulated and various real-world
gene expression time series (macrophages challenged with viral infection, circadian regulation in
Arabidopsis thaliana, and morphogenesis in Drosophila melanogaster). This justifies the approach
taken in [DH3,DH4,DH44,DH45].

The approach in [DH3,DH4,DH44,DH45] is conceptually similar to the one discussed in Section 6.5.
There are various differences, though: only the parameters rather than the structure may vary
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between changepoints, there is a functional difference in the form of the priors on changepoints
and parameters, and the underlying motivation/objective (improved nonlinear model flexibility)
is different. To demonstrate the improvement in nonlinear modelling capability, I will provide a
very simple illustration here, for demonstration purposes. Comprehensive comparative evaluation
studies on more complex simulated and real-world data are available from the publications cited
above.

Consider synthetic data generated from the simple network of Figure 6.15 according to the dynamics
defined by the nonlinear state-space equations (6.14), with the nonlinear function f(.) = sin(.).
In [DH45] we generated 40 observations by applying equation (6.14) and setting the drift term
c = 2π/41 to ensure that the complete period [0, 2π] of the sinusoid is involved. Figure 6.16
shows the marginal posterior probabilities of the four possible edges in the two-node network of
Figure 6.15 and the nonlinear state space process of (6.14). The results Figure 6.16(a) were obtained
with the linear BGe model and show a clear propensity for inferring the spurious self-loop Y → Y .
Compare this with the results for the proposed non-homogeneous DBN, shown in Figure 6.16(b).
Here, the spurious self-loop Y → Y is suppressed in favour of the correct edge X → Y . There
are two noise regimes in which the spurious self-loop Y → Y has a marginal posterior probability
that is higher than or equal to that of the correct edge X → Y . One noise regime is where both
noise levels in X and Y are low (top left corner in panels (a) and (b) of Figure 6.16). Here, the
autocorrelation of Y is so high that the spurious self-loop Y → Y is still favoured over the true
edge X → Y ; this is a consequence of the fact that the functional dependence of Y (t+ 1) on X(t)
is only learned approximately (namely approximated by a piecewise linear model induced by a
multiple changepoint process). The second regime is where both noise levels are high (bottom right
corners in panels (a) and (b) of Figure 6.16). High noise in Y blurs the functional dependence of
Y (t + 1) on X(t), while high noise in X leads to a high mis-classification of latent variables and,
consequently, a deterioration of the model accuracy; this is a consequence of the fact that latent
variables are not allocated individually, as in [DH12], but according to a changepoint process.
However, in the majority of noise scenarios, the marginal posterior probability of the correct edge
X → Y is significantly higher than that of the self-loop Y → Y . This suggests that the proposed
non-homogeneous DBN is successful at suppressing spurious feedback loops.

Our studies in [DH3,DH4,DH44,DH45] include a variety of further comparative evaluations on both
synthetic and real-world data. We demonstrate the superiority of the proposed approach over the
classical models BGe and BDe (see Section 6.1) as well as a competing nonlinear model [76]; we
demonstrate the repression of potentially spurious feedback loops in regulatory networks related
to macrophages challenged with viral infection; and we show that the gene regulatory network
inferred from gene expression time series of nine circadian clock-regulated genes in Arabidopsis
thaliana shows features that are consistent with the biological literature. We have also further
improved the method by introducing a novel Bayesian clustering and information sharing scheme
among nodes, which provides a mechanism for automatic model complexity tuning; see [DH3] for
details.

105



66k 550k 1100k
0

0.2

0.4

0.6

0.8

1

PSRF<1.02

computational costs [in MH/RJMCMC steps]

fr
ac

ti
o

n
 o

f 
ed

g
es

 

 

66k 550k 1100k
0

0.2

0.4

0.6

0.8

1

PSRF<1.05

fr
ac

ti
o

n
 o

f 
ed

g
es

computational costs [in MH/RJMCMC steps]

 

 

66k 550k 1100k
0

0.2

0.4

0.6

0.8

1

PSRF<1.1

computational costs [in MH/RJMCMC steps]

fr
ac

ti
o

n
 o

f 
ed

g
es

 

 

MH/RJMCMC
Gibbs (K

max
=5)

Gibbs (K
max

=10)

Gibbs NBIN(0.05,2)

Figure 6.17: Convergence diagnostics. The graphs show the proportion of edges for which the potential scale
redcution factor (PSRF) [49] lies below the indicated threshold, satisfying the respective convergence criterion. The
horizontal axes represent simulation time, measured in terms of the equivalent number of MH/RJMCMC steps. Four
MCMC schemes are compared. MH/RJMCMC: conventional Metropolis-Hastings based on single-edge proposal
moves and RJMCMC for the changepoints. The other alternatives use the Gibbs sampling scheme proposed in [DH4]
and described in Section 6.7, with three different priors for the changepoints: truncated Poisson priors on the number
of components, truncated at the indicated value Kmax, and the negative binomial distribution (NBIN) from (6.15).

6.7 Mixing and Convergence of MCMC

In [DH14] I demonstrated, in collaboration with Marco Grzegorczyk, how mixing and convergence of
MCMC simulations for Bayesian learning of static Bayesian networks can be significantly improved.
In [DH4], we discussed a significant improvement in MCMC convergence and mixing for non-
homogeneous DBNs. In the present section, I use the following notation: M denotes the network
structure, Kn denotes the number of components (number of changepoints plus 1) associated with
node n, Vn is a vector of latent allocation variables assigning node n to its components, the
vector K = (K1, . . . ,KN ) and the matrix V = (V1, . . . ,VN ) combine the respective values for all
nodes. To sample from the posterior distribution, P (M,V,K|D), all previous studies [83, 84, 118],
including our own work in [DH44], follow the same procedure: to sample the network structure
M, they follow [51, 90] and apply structure MCMC with the Metropolis-Hastings algorithm [59],
based on single-edge operations; to sample the latent variables (V,K), they follow [54] and apply
reversible jump Markov chain Monte Carlo (RJMCMC), based on changepoint birth, death, and
reallocation moves. In [DH4], we propose an improved scheme based on dynamic programming.
The idea is to adapt the method proposed by Fearnhead [39] in the context of Bayesian mixture
models to non-homogeneous DBNs of the form discussed in the previous two sections. Fearnhead
[39] assumes that the changepoints occur at discrete time points, and he considers two priors for
the changepoints. The first prior is based on a prior for the number of changepoints, and then
a conditional prior on their positions. This corresponds exactly to P (Kn) and P (Vn|Kn), as we
used in the work summarized in the previous sections. The second prior is obtained from a point
process on the positive and negative integers. The point process is specified by the probability mass
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function g(t) for the time between two successive points, for which a natural choice is the negative
binomial distribution

g(t|a, p) =
(
t− a
a− 1

)
pa(1− p)t−a (6.15)

whose form is defined by two hyperparameters, a and p. The choice of this prior immediately im-
poses a prior distribution on the latent variables Vn without any conditioning on Kn, P (Vn|Kn)→
P (Vn). For the remainder of this section, I use the generic notation Ṽ = (Ṽ1, . . . , ṼN ) to denote
the latent variables induced by the changepoint prior. Depending on the form of the latter, we
either have Ṽ = (V,K) or Ṽ = V. Given a Bayesian mixture model for which the latent variables
are of the form of one of the two changepoint processes discussed above, and the parameters can be
integrated out in the likelihood, the changepoints can be sampled from the proper posterior distri-
bution exactly, with a dynamic programming scheme. The computational complexity is quadratic
in the number of observations T . To adapt this scheme to the inference of non-homogeneous
DBNs, note that the Bayesian sampling of P (M, Ṽ|D) can in principle follow a Gibbs sampling
procedure, iteratively sampling the latent variables from P (Ṽ|M,D), and a new network struc-
ture from P (M|Ṽ,D). The first step can be accomplished with dynamic programming. However,
given the comparatively high computational costs, the overall scheme is computationally ineffi-
cient if we follow [83, 84, 118] and [DH44] and stick to a structure MCMC step for updating M,
i.e. if we follow a computationally expensive complete Gibbs step for sampling from P (Ṽ|M,D)
by a computationally cheap Metropolis-Hastings-within-Gibbs step for incomplete sampling from
P (M|Ṽ,D). To resolve this issue, we adapted the sampling scheme proposed in [45], Eq. (10). Note
that the network structure M is defined by the complete set of parent sets {πn}1≤n≤N . Having
sampled Ṽ = (Ṽ1, . . . , ṼN ) from P (Ṽ|M,D) in the previous Gibbs step, we now sample M from
P (M|Ṽ,D) by sampling, for all nodes n ∈ {1, . . . , N} in turn, new parent configurations {πn} from

P (πn|D, Ṽn) = Ψ†(Dπn
n [Ṽn])/

∑
π̃n

Ψ†(Dπ̃n
n [Ṽn]) (6.16)

where Ψ†(Dπn
n [Ṽn]) is a local score corresponding to the marginal likelihood of a configuration

defined by node n and parents πn. Equation (6.16) entails a complete enumeration over all parent
configurations, which is computationally expensive. In [DH4] we therefore investigated under which
conditions the dynamic programming scheme for exact sampling of Ṽ from P (Ṽ|M,D) achieves
an overall gain in computational efficiency. We also investigated how critically the computational
costs depend on the prior distribution for the changepoints. An illustration, obtained from gene
expression time series of nine circadian genes in Arabidopsis thaliana, is shown in Figure 6.17. The
results from a comprehensive comparative evaluation study, as well as a detailed mathematical
derivation of the algorithm, are available from [DH4].
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Chapter 7

Modelling Transcriptional Regulation

Understanding the mechanisms of gene transcriptional regulation through analysis of
high-throughput postgenomic data is one of the central problems of computational
systems biology. Various approaches have been proposed, but most of them fail to
address at least one of the following objectives: (1) allow for the fact that transcrip-
tion factors are potentially subject to post-transcriptional regulation; (2) allow for the
fact that transcription factors co-operate as a functional complex in regulating gene
expression, and (3) provide a model and a learning algorithm with manageable compu-
tational complexity. The objective of my work with Kuang Lin [DH8] was to develop
and test a method that addresses these three issues. Our approach aims to integrate
gene expression profiles with transcription factor binding data, such as binding motifs
in promoter regions or p-values from immunoprecipitation experiments. Our model
is a mixture of factor analyzers, in which the latent variables correspond to different
transcription factors, grouped into complexes or modules. Inference is carried out
in a Bayesian framework, using the Variational Bayesian Expectation Maximization
(VBEM) algorithm for approximate inference of the posterior distributions of the
model parameters, and estimation of a lower bound on the marginal likelihood for
model selection. We carried out a comparative evaluation with other state of the art
methods to assess the accuracy of transcription factor activity profile reconstruction
and regulatory network inference.
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7.1 Overview

Quantitative modelling of the regulatory networks of the cell is one of the central challenges in
computational biology. One of the most important cellular regulation mechanisms is at the tran-
scriptional level, where the expression of a gene is controlled by the binding of diverse regulatory
proteins called transcription factors (TFs) to specific DNA sequences in the promoter region of the
gene. Transcriptional gene regulation is a complex process that utilizes a network of interactions.
These networks control the expression levels of thousands of genes as part of diverse biological
processes such as the cell cycle, embryogenesis, host-pathogen interactions and circadian rhythms.
Determining accurate models for TF-gene regulatory interactions is thus an important challenge
of computational systems biology. Most recent studies of transcriptional regulation can be placed
broadly in one of three categories.

Approaches in the first class attempt to build quantitative models to associate gene expression
levels, as typically obtained from microarray experiments, with putative binding motifs on the gene
promoter sequences. Bussemaker et al. [20] and Conlon et al. [29] propose a linear regression
model for the dependence of the log gene expression ratio on the presence of regulatory sequence
motifs. Beer and Tavazoie [11] cluster gene expression profiles in a preliminary data analysis based
on correlation, and then apply a Bayesian network classifier to predict cluster membership from
sequence motifs. Phuong et al. [106] use multivariate decision trees to find motif combinations
that define homogeneous groups of genes with similar expression profiles. Segal et al. [131] cluster
genes with a probabilistic generative model that systematically integrates gene expression profiles
with regulatory sequence motifs.

A shortcoming of the methods in the first class is that the activities of the TFs are not included in
the model. This limitation is addressed by models in the second class, which predict gene expres-
sion levels from both binding motifs in promoter sequences and the expression levels of putative
regulators. Middendorf et al. [99, 98] approach this problem as a binary classification task to pre-
dict up- and down-regulation of a gene from a combination of a motif presence/absence indication
and the discrete transcriptional state of a putative regulator. The bi-dimensional regression trees
of Ruan and Zhang [120] are based on a similar idea, but avoid the information loss inherent in the
binary gene expression discretization. My work with Adriano Werhli [DH16], summarized in the
previous chapter, falls into the same class in that regulatory networks of genes are inferred from
transcriptional profiles of genes and their putative regulators complemented with prior knowledge
about binding motifs in promoter sequences.

Transcriptional regulation is influenced by TF activities, that is the concentration of the TF sub-
population capable of DNA binding. The methods in the second class approximate the activities
of TFs by their gene expression levels. However, TFs are frequently subject to post-translational
modifications, which may affect their DNA binding capability. Consequently, gene expression levels
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Figure 7.1: Transcriptional regulatory network. The left panel shows a transcriptional regulatory network in
the form of a bipartite graph, in which a small number of transcription factors (TFs), represented by circles, regulate
a large number of genes (represented by squares) by binding to their promoter regions. The black lines in the square
boxes indicate gene expression profiles, that is, gene expression values measured under different experimental condi-
tions or for different time points. The black lines in the circles represent TF activity profiles, i.e. the concentrations
of the TF subpopulation capable of DNA binding. Note that these TF activity profiles may be unobserved owing to
post-translational modifications, and should hence be included as hidden or latent variables in the statistical model.
The right panel shows a more accurate representation of transcriptional regulation that allows for the cooperation of
several TFs forming functional complexes; this complex formation is particularly common in higher eukaryotes.

of TFs may contain only limited information about their actual activities. The methods in the third
class address this shortcoming by treating TFs as latent or hidden components. The regulatory
system is modelled as a bipartite network, as shown in the left panel of Figure 7.1, in which high-
dimensional output data are driven by low-dimensional regulatory signals. The high-dimensional
output data correspond to the expression levels of a large number of regulated genes. The regulators
correspond to a comparatively small number of TFs, whose activities are unknown. Various au-
thors have applied latent variable models like principal component analysis (PCA), factor analysis
(FA), and independent component analysis (ICA) to determine a low-dimensional representation
of high-dimensional gene expression profiles [87, 110]. However, these approaches provide only a
phenomenological modelling of the observed data, and the hidden components do not correspond
to identified TFs. Liao et al. [86] and Kao et al. [74] address this shortcoming by including partial
prior knowledge about TF-gene interactions, as obtained from Chromatin Immunoprecipitation
(ChIP) experiments [56] or TF binding motif finding algorithms [5, 67]. Their network component
analysis (NCA) is equivalent to a constrained maximum likelihood procedure in the presence of
Gaussian noise and independent hidden components; the latter represent the TF activities. A ma-
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jor limitation of NCA is the fact that the constraints on the connectivity pattern of the bipartite
network are rigid, which does not allow for the noise intrinsic to immunoprecipitation experiments
or sequence motif detection. Sabatti and James [122] and Sanguinetti et al. [125] address this
shortcoming by proposing an approach based on Bayesian factor analysis, in which prior knowl-
edge about TF-gene interactions naturally enters the model in the form of a prior distribution on
the elements of the loading matrix. Pournara and Wernisch [108] propose an alternative approach
based on maximum likelihood, where the loading matrix is orthogonally rotated towards a target
matrix of a priori known TF-gene interactions. All three approaches simultaneously reconstruct
the structure of the bipartite regulatory network – represented by the loading matrix – and the
TF activity profiles – represented by the hidden factors – from gene expression data and (noisy)
prior knowledge about TF-gene interactions. In a generalization of these approaches, Shi et al.
[132] have introduced a further latent variable to indicate whether a TF is transcriptionally or
post-transcriptionally regulated.

Contrary to the methods in the first two classes, the methods in the third class do not incorporate
interaction effects between TFs, though. This is a major limitation, since especially in higher
eukaryotes transcription factors co-operate as a functional complex in regulating gene expression
[112, 154]. Boulesteix and Strimmer [16] allow for this complex formation by proposing a latent
variable model in which the latent components correspond to groups of TFs. However, their partial-
least squares (PLS) approach does not provide a probabilistic model and hence, like NCA, does
not allow for the noise inherent in TF binding profiles from immunoprecipitation experiments or
sequence motif detection schemes.

In my work with Kuang Lin [DH8] we aimed to combine the advantages of the methods in the three
classes summarized above. Like the approaches in the third class, our method is a latent variable
model that allows for the fact that owing to post-translational modifications the true TF activities
are unknown. Similar to the approaches of the first two classes, our model explicitly incorporates
interactions among TFs. Inspired by [16], we aim to group individual TFs into TF modules, as
illustrated in the right panel of Figure 7.1. To allow for the noise inherent in both gene expression
levels and TF binding profiles, we use a proper probabilistic generative model, like [122, 125]. Our
work is based on the work of Beal [9]. We apply a mixture of factor analyzers model, in which each
component of the mixture corresponds to a TF complex composed of several TFs. This approach
allows for the fact that TFs are not independent. By explicitly including this in our model we
gain a more parsimonious representation with fewer parameters, and hence more stable inference.
To further improve the robustness of this approach, we pursue inference in a Bayesian framework,
which includes a model selection scheme for estimating the number of TF complexes.
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Figure 7.2: Bayesian mixture of factor analyzers (MFA) model applied to transcriptional regulation.
The figure shows a probabilistic independence graph of the Bayesian mixture of factor analyzers (MFA) model
proposed in [DH8]. Variables are represented by circles, and hyperparameters are shown as square boxes in the
graph. S components (factor analyzers), each with their own parameters λs = [λs

e, λ
s
b] and µs = [µs

e, µ
s
b], are used to

model the expression profiles ye
i and TF binding profiles yb

i of i = 1, . . . , N genes. The factor loadings λs have a zero-
mean Gaussian prior distribution, whose precision hyperparameters νs are given a gamma distribution determined
by a∗ and b∗. The analyzer displacements µs

e and µs
b have Gaussian priors determined by the hyperparameters

{µ∗
e , ν∗

e} and {µ∗
b , ν∗

b}, respectively. The indicator variables si ∈ {1, . . . , S} select one out of S factor analyzers, and
the associated latent variables or factors xi have Normal prior distributions. The indicator variables si are given a
multinomial distribution, whose parameter vector π, the so-called mixture proportions, have a conjugate Dirichlet
prior with hyperparameters α∗m∗. Ψe and Ψb are the diagonal covariance matrices of the Gaussian noise in the
expression and binding profiles, respectively. A dashed rectangle denotes a plate, that is an iid repetition over the
genes i = 1, . . . , N or the mixture components s = 1, . . . , S, respectively. The biological interpretation of the model
is as follows. µs

b represents the composition of the sth transcriptional module, that is, it indicates which TFs bind
cooperatively to the promoters of the regulated genes. λs

b allows for perturbations that result e.g. from the temporary
inaccessibility of certain binding sites or a variability of the binding affinities caused by external influences. µs

e is
the background gene expression profile. λs

e represents the activity profile of the sth transcriptional module, which
modulates the expression levels of the regulated genes. xi describes the gene-specific susceptibility to transcriptional
regulation, that is, to what extent the expression of the ith gene is influenced by the binding of a transcriptional
module to its promoter. A complete description of the model can be found in [DH8].
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7.2 Method

The model we proposed in [DH8] is shown in Figure 7.2. A complete description can be found in
our paper. In this high-level overview I will only outline the central ideas of variational Bayesian
inference, which we applied. Denote by X = (X1, . . . , XT ) the latent variables, which are related to
the unknown TF activity profiles and TF complex memberships, and by θ the model parameters.
The latter are treated as random variables for which some prior distribution P (θ) is defined.
The objective of Bayesian inference is to infer the posterior distribution p(θ,X|Y,M) from the
data Y = {Y 1, . . . , Y T } for some model M, and to decide on the best model M on the basis of
the marginal likelihood P (Y|M). Recall that the data Y includes transcriptional profiles (from
microarrays) and TF bindings indications (from immunoprecipitation assays). In the context of
our work [DH8], the model selection task is to decide on the number of components in the mixture.
Unfortunately, neither P (θ,X|Y,M) nor P (Y|M) can be computed in closed form. The objective
of variational inference is to approximate both on the basis of an analytically tractable model
distribution Q(X,θ). Define

F =
∫
Q(X,θ) log

(
P (θ,X,Y|M)

Q(X,θ)

)
dXdθ (7.1)

It is easy to show that F can be decomposed into the following form:

F = logP (Y|M)−KL{Q(X,θ)||P (θ,X|Y,M)} (7.2)

which is the difference of the log marginal likelihood and the Kullback-Leibler divergence between
the model distribution Q(X,θ) and the unknown true posterior distribution P (θ,X|Y,M):

KL{Q(X,θ)||P (θ,X|Y,M)} =
∫
Q(X,θ) log

(
Q(X,θ)

P (θ,X|Y,M)

)
dXdθ (7.3)

From information theory it is known that the Kullback-Leibler divergence, which is a measure of
the difference between two distributions, is non-negative; see for instance Chapter 2 in [DH1]. This
implies that F is a lower bound on the marginal likelihood logP (Y|M), with a difference given
by the the Kullback-Leibler divergence KL{Q(X,θ)||P (θ,X|Y,M)}. The objective of variational
Bayesian inference is to numerically maximize F . This gives the best approximation to the true
posterior distribution from the functional family Q, while simultaneously F gives the best possible
approximation to the marginal likelihood.

To apply the concept of variational learning to the model we proposed in [DH8], the model distri-
bution is assumed to factorize into separate contributions from the parameters and latent variables:
Q(θ,X) = Q(θ)Q(X). The variational learning algorithm then iteratively maximizes the functional
F with respect to the free distributions Q(θ) and Q(X). Given a fixed distribution of the param-
eters Q(t)(θ), F is maximized with respect to Q(X) by setting to zero the following functional
derivative:

δ

δQ(X)

(
F + ξ

[∫
Q(X)dX− 1

])
= 0 (7.4)
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Table 7.1: Overview of methods. The table shows an overview of the methods with which we compared the
model we proposed in [DH8].

The partial least squares approach proposed in
[16]. Note that the method treats TF-gene

PLS interactions as fixed constants that cannot be changed
in light of the gene expression data. Hence, this
approach cannot be used for network reconstruction and was
only applied for reconstructing the TF activity profiles.
Maximum likelihood factor analysis, effected with the EM algorithm [50]

FA and a subsequent varimax rotation [70] of the loading matrix
towards maximum sparsity as proposed in [108].
Bayesian factor analysis [122], trained with

BFA-Gibbs Gibbs sampling. The TF regulatory network is obtained from
the posterior expected loading matrix.
Our mixture of factor analyzers model, shown in Figure 7.2 and discussed in [DH8],

MFA-VBEM trained with variational Bayesian Expectation Maximization.
The approach is based on the work of Beal [9].

where ξ is a Lagrange multiplier resulting from the normalization constraint. Equation (7.4) has
the formal closed-form solution:

Q(t+1)(X) =
1
ZX

exp
[∫

dθQ(t)(θ) logP (Y,X|θ,M)
]

(7.5)

where ZX denotes a normalization constant. Likewise, given a fixed distribution of the latent
variables Q(t+1)(X), F is maximized with respect to Q(θ) by setting to zero the following functional
derivative:

δ

δQ(θ)

(
F + ξ

[∫
Q(θ)dθ − 1

])
= 0 (7.6)

which has the formal closed form solution

Q(t+1)(θ) =
1
Zθ

P (θ|M) exp
[∫

dXQ(t+1)(X) logP (Y,X|θ,M)
]

(7.7)

Again, Zθ is a normalization constant. For a derivation of these results, see [9]. For distributions of
the exponential family, which includes our model in [DH8], the integrals in equations (7.5) and (7.7)
have a closed-form solution, as shown in [9]. In analogy to the Expectation Maximization (EM)
algorithm, the variational learning algorithm follows an iterative adaptation procedure including
the following two steps. Variational E-step: Given the distribution of the parameters Q(t)(θ),
where t indicates the iteration number, obtain a new distribution of the latent variables Q(t+1)(X)
by application of equation (7.5). Variational M-step: Given the distribution of the latent variables
Q(t+1)(X), obtain a new distribution of the parameters Q(t+1)(θ) by application of equation (7.7).
This procedure, called the Variational Bayesian Expectation Maximization (VBEM) algorithm, is
repeated until a stationary point of F is reached.
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Table 7.2: Reconstruction of TF complex activity profiles. The table shows the mean absolute correlation
coefficient between the true and inferred activity profiles, averaged over 6 simulated activity profiles. N1, N2 and
N3 refer to the three noise levels of ei ∼ N (0, 0.25I), N (0, 0.5I) and N (0, I). L1, L2, and L3 refer to the expression
profile lengths being 10, 20 and 40. Three methods have been compared: the partial least squares (PLS) approach
proposed in [16]; Bayesian factor analysis (BFA) with Gibbs sampling [122]; and the MFA model trained with VBEM,
proposed in [DH8].

Method Lengths N1 N2 N3
PLS 0.53 0.52 0.52
BFA L1 0.92 0.89 0.78
MFA 0.88 0.83 0.71
PLS 0.52 0.51 0.52
BFA L2 0.83 0.72 0.72
MFA 0.95 0.85 0.71
PLS 0.52 0.51 0.52
BFA L3 0.90 0.73 0.67
MFA 0.98 0.94 0.63

Note that VBEM and MCMC are alternative paradigms for approximate Bayesian inference. While
posterior estimates obtained with MCMC are, under certain regularity conditions (ergodicity),
consistent, VBEM is known to systematically underestimate the posterior uncertainty; see e.g.
[14] and Figure 5.2 in [82]. On the other hand, the computational costs for MCMC are usually
substantially higher than for VBEM, and monitoring convergence is more straightforward for VBEM
than for MCMC.

7.3 Findings

Reconstruction of TF activity profiles

Since TF activity profiles are not available for real data, we used synthetic data from a simulation
study to evaluate the profile reconstruction performance of the model. Details of these simulations
can be found in [DH8]. We compared the proposed MFA-VBEM model with the partial least-
squares (PLS) approach of Boulesteix and Strimmer [16], and with the Bayesian factor analysis
model using Gibbs sampling (BFA-Gibbs), as proposed in [122]. An overview of the models is
shown in Table 7.1.

Table 7.2 shows a comparison of the reconstruction accuracy in terms of the mean absolute Pearson
correlation between the true and estimated TF module activity profiles. It is seen that BFA-
Gibbs and the proposed MFA-VBEM scheme consistently outperform PLS. The comparatively
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Figure 7.3: Out-of-sample TF regulatory network reconstruction for yeast. The figure shows ROC
(Receiver Operating Characteristic) curves obtained for S. cerevisiae with three different methods: (1) solid line: the
MFA-VBEM method we proposed in [DH8], adapted from [9]; (2) dashed line: the Bayesian FA model with Gibbs
sampling, as proposed in [122]; and (3) dotted line: maximum likelihood FA trained with the EM algorithm [50] and
a subsequent varimax rotation [70] of the loading matrix towards maximum sparsity, as proposed in [108].

poor performance of PLS, which has been independently reported in [108], is a consequence of the
fact that PLS lacks any mechanism to deal with the noise inherent in the TF binding profiles. This
shortcoming is addressed by both BFA-Gibbs and MFA-VBEM.

A comparison between BFA-Gibbs and MFA-VBEM shows that BFA-Gibbs tends to outperform
MFA-VBEM when the expression profiles are short (length L1) or when the noise level is high (N3).
This could be a consequence of the different inference schemes (“VBEM” versus “Gibbs”). Short
expression profiles and high noise levels lead to diffuse posterior distributions of the parameters.
Variational learning – as opposed to Gibbs sampling – is known to lead to a systematic underesti-
mation of the posterior variation [14], which could be a disadvantage here. However, MFA-VBEM
consistently outperforms BFA-Gibbs on the longer expression profiles with length L2 and L3, and
the lower noise levels N1 and N2. It appears that this improvement in the performance is a con-
sequence of the more parsimonious model that results when allowing for the fact that TFs are not
independent, which leads to greater robustness of inference and reduced susceptibility to overfitting.
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Regulatory network reconstruction

For evaluating the inference of transcriptional regulation in real organisms, we chose gene expression
and TF binding data from the widely used model organism Saccharomyces cerevisiae (baker’s
yeast). We used the gene expression data from [101] and the TF binding profiles from YeastTract
[141]. YeastTract1 provides a comprehensive database of transcriptional regulatory associations
in S. cerevisiae. Our combined data set included the expression levels of 5464 genes under 214
experimental conditions and binary TF binding patterns associating these genes with 169 TFs.

For the network prediction task, we trained the models on only 80% of the S. cerevisiae genes, and
used an independent test set containing a randomly selected subset of 20% of the genes to estimate
the out-of-sample network prediction accuracy. Note that for the genes in the test set, only the
expression profiles were made available, while the corresponding TF binding connections were held
back. The task was to predict these TF binding connections from the gene expression data, using
the (average) TF activity profiles inferred from the training set. For a more comprehensive descrip-
tion of the evaluation, see [DH8]. The results are shown in Figure 7.3. None of the ROC curves is
particularly good, which indicates that there is substantial room for further methodological inno-
vation. However, the method we proposed in [DH8] clearly outperforms the competing approaches.
This improved performance is a consequence of the more parsimonious model that results from
modelling the fact that TFs are non-independent, but act via complexes; see Figure 7.1. On the
contrary, there is nothing in the competing approaches that would inform the model a priori that
once a group of TFs are found to form a module, their interaction patterns with the regulated
genes should be the same. Instead, these interaction strengths have to be learned separately for
each TF. This leads to a less parsimonious and partially redundant model, which is less robust and
more susceptible to overfitting.

1Publicly available from http://www.yeastract.com.
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Chapter 8

Outlook:
From Molecular Biology to Ecology

The complexity of ecosystems is staggering, with hundreds or thousands of species
interacting in a number of ways from competition and predation to facilitation and
mutualism. Understanding the networks that form the systems is of growing impor-
tance, e.g. to understand how species will respond to climate change, or to predict
potential knock-on effects of a biological control agent. In the present chapter, I
summarize my work in [DH5] and address the question to what extent the methods
discussed in the previous chapters, used to reconstruct regulatory networks in molecu-
lar biology, can be adapted to infer species interaction networks in ecology, and which
methodological hurdles have to be overcome.

8.1 Introduction

Darwin’s description of a tangled bank describes the everyday complexity of ecology that we over-
look at our peril. Tampering with the population of one species can cause surprising and dramatic
changes in the populations of others [28, 64]. Altering pressures to which ecosystems are exposed
can drive them to alternative states [12] or catastrophic failure [133]. Understanding and predicting
how ecosystems will respond to change requires untangling the tangled bank and is of enormous
importance during a period of rapid global change. Yet such a task can seem impossible given the
enormous complexity of ecological systems and the excruciating fieldwork needed to quantify even
the simplest of foodwebs [69, 97].
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Molecular biology Ecology
Genes ↔ Species

Expression levels ↔ Population densities
Gene regulation ↔ Species interactions

Different conditions ↔ Different environments

Table 8.1: Comparison between molecular biology and ecology. The table shows the formal correspondences
between molecular systems biology and ecological.

The current approaches typically taken to learn the structure of a species interaction network are
based on minute observations and detailed field work. For instance, the information theoretic sum-
mary statistics proposed in [15] were applied to the plant-pollinator interaction networks obtained
in [96, 148]. These studies entailed detailed observations of how often a particular plant was visited
by a particular pollinator, for all pollinators and plants in turn. This process is laborious and
error-prone. More importantly, it is restricted to specific kinds of interactions. The interactions
between pollinators and their host plants are amenable to direct observation. However, other types
of species interactions, like competition for resources, facilitation1 and mutualism2, are not, and
might not even be clearly defined from the outset.

However, information about ecological interactions should be evident in a range of ecological data
that are currently available. For example, time-series of the populations of multiple species present
in a study site should allow identification of important interactions, and similarly the spatial pat-
terns of coincidence of species should contain information about the interactions among these
species, potentially at a range of scales. In my joint work with Ali Faisal, Frank Dondelinger
and Colin Beale [DH5], we therefore investigated to what extent network reconstruction methods
currently applied in molecular systems biology, like those described in Chapter 6, can be applied
to reconstruct interaction networks in silico from species abundance counts. A comparison of the
formal correspondences can be found in Table 8.1.

8.2 Method

In the most general case, our aim in describing an ecological network is to model all the interactions
between and among species and their environment. It is convenient to think of this network as a
’graph’ (e.g. Fig. 8.4), describing species as the ’nodes’ within the graph, and interactions as the
links or ’edges’ that join the nodes. To identify and infer these graphs we selected four widely used
methods for network recovery in postgenomic data analysis: Graphical Gaussian models [126, 127],
L1-regularized regression (LASSO) [142, 147], sparse Bayesian regression [119, 143] and Bayesian

1Ecological facilitation describes how an organism profits from the presence of another.
2Mutualism is the way two organisms biologically interact where each individual derives a fitness benefit.
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Figure 8.1: Illustration of spatial auocorrelation. The colour indicates the population density of a selected
species, depending on the grid location. This is the result of a simulation study that combined a niche model [153]
with a stochastic population model [79, Chapter 8] in a 2-dimensional 25-by-25 lattice and included predator-prey
interactions in the Lotka-Volterra form. The effect of spatial autocorrelation is evident: densities at nearby locations
are more similar than densities at more distant locations.

networks (as discussed in Chapter 6). For a review of these methods, see [DH5].

A particular methodological complication, which we did not have to address for the molecular
data, is spatial autocorrelation. This phenomenon, that observations at nearby locations are more
similar than observations at more distant locations, as illustrated in Figure 8.1, is nearly ubiquitous
in ecology and can have a strong impact on statistical inference [30, 85]. In our case, spatial
autocorrelation could lead to the identification of spurious interactions as a mere consequence of two
species co-occurring in similar geographical regions. Where possible, we applied an autoregressive
approach similar to that of [4] to incorporate potential spatial autocorrelation into the models. To
this end, we computed the average population at neighbouring cells, weighted inversely proportional
to the distance of the neighbours. We call this the autocorrelation variable:

a =
∑K

i=1 ωixi∑K
i=1 ωi

(8.1)

where K is the number of neighbours that we are considering (usually K = 4), xi is the population
density at neighbour i, and ωi is the weight given to that neighbour, which is inversely proportional
to the Euclidean distance of the neighbour. A slight subtlety when working with real world data that
is not distributed in a regular grid is to work out which neighbouring locations to consider. In this
work, we have opted for the closest neighbours by Euclidean distance. For Bayesian networks, we
connect each node to a parent node whose value is given by (8.1), i.e. a representation of the spatial
neighbourhood.3 An illustration can be found in Figure 8.2(b). In this way the observation status

3The incoming edge from the parent node is enforced and excluded from the fan-in count.
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da b c

Figure 8.2: Illustration of the improved method for ecological network reconstruction. Panel (a)
illustrates a species interaction network modelled by a Bayesian network. Yellow circles represent species (nodes),
red arrows present species interactions (edges). Networks inferred from species abundance or population density data
alone tend to contain many spurious interactions. In [DH5], we investigated three methods for suppressing spurious
interactions, illustrated in the panels on the right. Panel (b): Allowing for spatial autocorrelation. Each node is
hard-wired to an indicator node (blue square) that represents, via equation (8.1), the average population density in
the spatial neighbourhood. Panel (c): Including bioclimate variables. Each node is hardwired to another indicator
node (green hexagon) that represent the state of various bioclimate variables. Panel (d): Allowing for missing data.
The model can be further improved by connecting all nodes to a latent node that represents unobserved effects. The
observation status at a node is, in the first instance, predicted by the spatial neighbourhood, the bioclimate variables
and/or the latent variable. Only if the explanatory power of these correction schemes is not sufficient will there be
an incentive for the inference scheme to include further edges related to species interactions. Hence the effect of these
corrections is to reduce the network connectivity and filter out spurious interactions.

at a node is, in the first instance, predicted by the spatial neighbourhood. Only if the explanatory
power of the latter is not sufficient will there be an incentive for the inference scheme to include
further edges related to species interactions. The application to regression based approaches is
discussed in [DH5].

Additionally, we want to include bio-climate covariates. In the study described in [DH5], they were
related to the average temperature and water availability. These extra variables are included in the
same way as the spatial autocorrelation variable. In particular, in a Bayesian network, we introduce
fixed connections between the bio-climate covariates and the other nodes.4 An illustration is given
in Figure 8.2(c).

4Note that we have to modify the fan-in restriction so that it does not take these extra variables into account.
For instance, if the fan-in limit is three, then that means that a species can have up to six parent nodes: three other
species, the covariates, and the spatial autocorrelation node.
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Figure 8.3: Network reconstruction accuracy. The figure shows AUC and TPFP5 performance measures for
the simulated species population densities. These measures were explained in Section 6.3.2. AUC is the area under the
ROC curve. TPFP5 is the true prediction rate at a fixed false positive rate of 5%. The boxplots show the distributions
of these scores, where the horizontal bar shows the median, the box margins show the 25th and 75th percentiles, the
whiskers indicate data within 2 times the interquartile range, and circles are outliers. Shaded boxes represent models
which include spatial autocorrelation. The expected random performance scores are AUC=0.5 and TPFP5=0.05.
Four reconstruction methods were compared. BN: Bayesian networks; GGM: graphical Gaussian models; LASSO:
L1-penalized regression; and SBR: sparse Bayesian regression. A detailed description of these methods can be found
in [DH5].

8.3 Findings

In order to have an objective measure of network recovery, we first tested the ability of the methods
to reconstruct the true network structure from test data generated by an ecological simulation
model. This model combines a niche model [153] with a stochastic population model [79, Chapter
8] in a 2-dimensional lattice and includes predator-prey interactions in the Lotka-Volterra form.
The system is described by a set of coupled stochastic differential equations, which are numerically
integrated up to a fixed point in time. At this stage, species population profiles on the 2-dimensional
lattice are recorded and provide the training data for the network reconstruction methods. An
example for a selected species is shown in Figure 8.1. A detailed description is available from
[DH5].

The results are shown in Figure 8.3. It is evident that allowing for spatial autocorrelation signifi-
cantly boosts the performance. Bayesian networks and LASSO with autorcorrelation outperform
the other models. However, there is no significant difference between Bayesian networks and LASSO
with autocorrelation; see also Figure 8.4. Note, though, that the approach of Bayesian learning of
Bayesian networks was applied in textbook form, as described e.g. in Chapter 2 of [DH1], and did
not include the methodological improvements discussed in Sections 6.3-6.5.
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Figure 8.4: Examples of recovered species interaction networks. Thick lines represent interactions that
were identified correctly (true positives), thin lines represent interactions that were not found (false negatives) and
dashed lines are spurious interactions (false positives). The threshold was chosen such that the false positive rate
was constant at 5%, resulting in 7 false positive edges. The results from two reconstruction methods are shown. Left
panel: Reconstruction with Bayesian networks. Right panel: Reconstruction with L1-penalized regression (LASSO).

Recovered network Number of edges Correlation with phylogenetic distance
Basic data set 80 -0.11 (-0.18,-0.04)

Spatial autocorrelation 69 -0.12 (-0.19,-0.05)

Spatial autocorrelation 37 -0.14 (-0.21,-0.07)

and bioclimate variables

Table 8.2: Results on the European bird atlas data. The table shows results obtained with Bayesian networks
on the 39 warblers from the European bird atlas. The first column indicates the data from which the interaction
network was reconstructed. The ‘basic data set’ includes only the breeding records. The other two data sets also
include spatial autocorrelation effects and bioclimate variables. The second column shows the number of interactions
whose posterior probability exceeds a given threshold, set to control the number of false positives as described in [DH5].
The third column shows the Pearson correlation between the inferred posterior probability of species interaction and
their phylogenetic distance, with the 95% confidence interval shown in brackets.

To test the utility of the available methods for network recovery in large real-world contexts, we
applied them to a subset of the European breeding bird data set [55] covering Europe west of
30◦E and including all probable and confirmed breeding records. From this data set we extracted
the distributions of all 39 old world warbler species breeding in this area. These species are all
small insectivores occupying a range of habitat types from boreal forest to Mediterranean reedbeds,
several of which are likely to interact at a range of spatial scales. As covariates we included the
mean temperature of the coldest month and the water availability for plant growth, two climate
variables that had strongest influence on avian distribution [10].

Owing to the lack of a gold standard, the reconstructed network is difficult to assess. A variety
of evaluation procedures are discussed in [DH5]. One of them is based on a comparison with
phylogenetic results, of the form discussed in Part 1 of this thesis. The conjecture is that species
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that are closely related phylogenetically are more likely to show some kind of interaction. The results
are summarized in Table 8.2. It turns out that there is indeed a small yet significant anticorrelation
between phylogenetic distance and probability of species interaction. This anticorrelation becomes
slightly stronger as we include spatial autocorrelation effects and bioclimate variables. Table 8.2
also shows the number of significant interactions. This number decreases as we allow for spatial
autocorrelation and include bioclimate variables. These findings suggest that the inclusion of
bioclimate variable and the modelling of spatial autocorrelation indeed make the reconstructed
network more realistic, in terms of a sightly better correlation with phylogenetic relations, and
by pruning out potentially spurious interactions, in corroboration of the concept illustrated in
Figure 8.2.

Further methodological advancements aim to allow for unobserved effects, related e.g. to missing
species or missing bioclimate variables. This can be modelled by including in the Bayesian network
latent nodes that incorporate these effects, as depicted in Figure 8.2(d). The approach we tried in
[DH5] was to connect all nodes to a set of binary latent nodes that indicate the presence or absence
of some unknown factor. This model is equivalent to connecting all nodes to a single discrete node
with an unknown number of discrete activation levels. This model is further equivalent to a mixture
model in which the nodes in the network are assigned to the mixture components, the number of
which is unknown and has to be inferred from the data. For the practical inference we applied
the Bayesian allocation sampler proposed in [DH12]. Unfortunately, owing to the large number
of grid locations from which breeding records were taken (over 3000), the MCMC simulations
never converged. A future research project is therefore to reduce the computational complexity
and replace the free allocation model by a multiple changepoint process, of the form discussed
in Sections 4 and 6.5; see also Figure 4.4. The 1-dimensional changepoint processes discussed
before have to be generalized to 2-dimensional changepoint processes, to allow for the two spatial
coordinates. I am currently pursuing these ideas with Andrej Aderhold and V. Anne Smith.
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The list below contains a complete list of my publications, as updated in February 2011. In the main
text, I cite my papers by number, where the number is enclosed in square brackets and preceded
by my initials, DH. Those papers that have been cited in the text are available as PDF files from
the following website: http://www.bioss.ac.uk/∼dirk/SelectedPublications. The names of
the files are identical to the citation labels, except for my book [DH1], which I have divided into
chapters. For instance, the twelfth paper from my publication list can be accessed as file DH12.pdf.
The second chapter of my book is available in file DH1 chapter2.pdf.
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