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The role of linguistic diversity in the prediction of early reading comprehension: A
quantile regression approach

LJ van den Bosch, E Segers... - Scientific Studies of ..., 2019 - Taylor & Francis

Using classical and quantile regression analyses, we investigated whether predictor

variables for early reading comprehension differed depending on language background and

ability level in a mixed group of 161 monolingual (L1) and bilingual (L2) children in second ...

v¢ U9 Citedby 1 Related articles All 5 versions

Variation across price segments and locations: A comprehensive quantile
regression analysis of the Sydney housing market
SR Waltl - Real Estate Economics, 2019 - Wiley Online Library

Standard house price indices measure average movements of average houses in average
locations belonging to an average price segment and hence obscure spatial and cross-
sectional variation of price appreciation rates even within a single metropolitan area. This ...

Y¢ U9 Cited by 13 Related articles All 4 versions 9



v Quantile regression analysis reveals widespread evidence for gene-
environment or gene-gene interactions in myopia development

A Pozarickij, C Williams, PG Hysi... - Communications ..., 2019 - nature.com

A genetic contribution to refractive error has been confirmed by the discovery of more than

150 associated variants in genome-wide association studies (GWAS). Environmental factors

such as education and time outdoors also demonstrate strong associations. Currently ...

¢ Y9 Related articles All 9 versions

T Asymmetric effects of monetary policy on firm scale in China: A quantile
regression approach

L Fang, L He, Z Huang - Emerging Markets Review, 2019 - Elsevier

This study explores asymmetric effects of monetary policy on firm scale at different firm size

levels. We find that Chinese firms respond to raising benchmark lending interest rates and

deposit reserve requirements by decreasing their scales. Our quantile regression results ...

Y9 Y9 Related articles All 4 versions



ML Foreign exchange interventions in Brazil and their impact on volatility: A
quantile regression approach
AP Viola, MC Klotzle, ACF Pinto... - ... in International Business ..., 2019 - Elsevier

This work aims to analyze the interventions conducted by the Central Bank of Brazil in the
Brazilian foreign exchange market from 2003 to 2014. For this purpose, we use quantile
regression analysis and some of its new formulas to examine the effects of government ...

Y¢ DY Citedby 1 Related articles All 4 versions

Differential effects of unemployment on depression in people living with
HIV/AIDS: a quantile regression approach

C Zeng, Y Guo, YA Hong, S Gentz, J Zhang, H Zhang... - AIDS care, 2019 - Taylor & Francis
Unemployment is associated with depression in people living with HIV (PLWH). However,

few studies have examined the effects of unemployment on PLWH with different levels of
depression. The current study explores the plausible differential effects of unemploymenton ...
Y¢ 99 Related articles All 4 versions



What is quantile regression?

What is a quantile?
Y: random variable with CDF Fy(y) = P(Y <y).
The 7th quantile of Y is

Q(Y)=inf{y: Fy(y) > 7}

7: quantile level, 0 < 7 < 1.
» 7 = 0.25: first quartile

» 7 = 0.5: median
» 7 =0.75: third quartile

Q-(Y): nondecreasing function of 7.



Conditional quantile

Regression setting

Y': response variable
x: p-dimensional predictor
Fy(y|x) = P(Y < y|x): conditional CDF of Y given x

Then the 7th conditional quantile of Y is defined as

Q- (Y|x) =inf{y : Fy(y|x) > 7}.



Mean vs quantile regression

» Least squares linear mean regression model:

Y=x"B+¢, E()=0.
Thus E(Y|x) = x' 83,
» Linear quantile regression model:
Q(Yx)=x"8(r), 0<7<1.

Q-(Y]x) is a non-decreasing function of 7 for any given x.



Example: location-scale shift model

Consider random variables Y;, i = 1,..., n where
Yi=a+z]B+(L+z]7)e,

with e & F ().
Conditional quantile function:

Q- (Yxi) = o) + 2] B(7),

» a(7) = a + F~1(7) is nondecreasing in 7;
» B(1) = B +~F~1(r) may depend on 7.

Location shift: v =0, so that 3(7) = 3 is constant across 7.



Galton's strength of squeeze data
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Galton's strength of squeeze data
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Quantile treatment effects
» X; = 0: control; X; = 1: treatment

Yi|Xi = 0 ~ F (control distribution) and Yj|Xi=1~ G
(treatment distribution)

v

» Mean treatment effect:

A= E(YIX = 1)~ E(ViX = 0) = [ ydG(y) - [ yaF ().

v

Quantile treatment effect:

()= Q(Y|Xi=1)— Q. (Y|Xi =0) = G L(r) — F (7).
Thus

A:/Ol G_l(u)du—/ol F—l(u)du:/ola(u)du.

Equivalent quantile regression model (with binary covariate):

Q- (Y|X) =a(r)+d(r)X.

v

v



Location shift

ﬁ\O- —
I
A L
I i
—~ | T T T I
N : 5 o ST 067
= 0z z z
i 310 (neneyap
—~
6
IT
> L
N
O L
I L
—
> L
N—r
w L
| T T T I :
¥ £0 20 10 00
fuisuaq

1.0

0.4 0.6 0.8

0.0 0.2

Tau



Scale shift
Scale shift: A = §(0.5) =0, but d(7) # 0 at other quantiles.
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Location-scale shift
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Why quantile regression?

1. To study the impact of predictors on different quantiles of the
response distribution in order to provide a complete picture of the
relationship between Y and x.



Example: Tropical cyclones

Hurricane Dorian 2019




Example: Tropical cyclones

» y; : max wind speeds of tropical cyclones in the North Atlantic

> x;: year 1978-2009
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Example: Tropical cyclones

Do the quantiles of max speed change over time?

Max Wind Speed (km/s)

160

140

1980

1985

1990

1995

Year

2000

2005

2010

-
0.95
0.75
0.50
0.25

p-value
0.009
0.100
0.718
0.659



Why quantile regression?

2. It is robust to outliers in y observations. (E.g. income
distribution.)

2 —— Median °

—— Mean




Why quantile regression?

3. It makes no distributional assumptions.



Equivariance properties

> (7' ay,X) = aB(T; y, X) for any constant a > 0
(

» B(r; —ay,X) = —aB(1 — 7;y, X) (scale equivariance)

P Y

(7;y + Xv,X) = B(7; y,X) + v where v € RP (regression
shift)

» B(r;y,XA) = A"13(7; y,x) where A is any p x p nonsingular
matrix (reparameterisation of design)

>



Equivariance to monotone transformations
Suppose h(-) is an increasing function on R. Then for any variable

Y,
Qu(v)(T) = h{Q-(Y)}.

That is, the quantiles of the transformed random variable h(Y') are
simply the transformed quantiles on the original scale.

This is not true in general for the mean, e.g.

E(log(Y)|X) # log(E(Y|X))

but

Q- (log(Y'[X)) = log(Q-(Y[X).



Interpolation

Linear quantile regression lines exactly fit p observations
(subgradient condition).

Which p points should be interpolated is determined by using all
observations.



Estimation of quantile regression coefficients

Mean regression — ordinary least squares (OLS)

» The mean E(Y) minimises E{(Y — a)?}.

» The sample mean minimises >_7_; (y; — a)°.

» The OLS estimator minimises Y7, (y; — x; 3)°.

Median regression — least absolute deviation (LAD)

» The median Qp5(Y)minimises E|Y — a|.
» The sample median minimises Y, |y; — a.

> Assuming Qo5(y|x) = x] 8(0.5), B3(0.5) can be obtained by
minimising Y7, |yi — x; 3.



Quantile coefficient estimation

» The 7th quantile Q;(Y) minimises E{p,(Y — a)}, where
pr(u) = u{T — I(u < 0)} is the quantile loss function.

P-U)

» The 7th sample quantile of Y minimises "7 ; p,(yi — a).
» Assuming Q-(Y|x) = x"B(7), then B(7) minimises
iy pelyi — 7 B).



How to minimise the objective function?

Linear programming problem

min y'b,
yeRm

subject to the constraints
y'A>c',

and
ylZOJ"'7ymZO7

where A is an m X n matrix, b € R™, c € R".



How to minimise the objective function?

Dual problem

max ¢’ x,

xeR"
subject to constraints
Ax <b

and
x > 0.



Quantile regression as a linear programming problem

where

up = e,-I(e,- > 0),
Vi = ]e,-|l(e,- < 0)
So

n
3 =57
1=
& min 71Ju4+(1-7)1)v
{b,U,V}
st.y—X'b=u—v
beRP, u>0, v>0.



Implementation in R

» Function rq() from library(quantreg) fits quantile
regression models.

» Syntax:
rq(y ~ x, tau=.5, data,method=...)

» method="br" (default) implements the simplex method of
Barrodale and Roberts (1974) for optimising the objective
function.

» method="fn" implements the Frisch-Newton interior point
algorithm (Portnoy and Koenker, 1997).

» method="sfn" implements a version of the interior point
algorithm suitable for sparse design matrices (Koenker and
Ng, 2003).



Example: illustration with simulated data

library(quantreg)
taus <- 1:9/10
fit <- rq(y ~ x, data=dat, tau = taus)
ggplot(dat, aes(x,y)) + geom_point()
+ geom_quantile(quantiles = taus)




Example: illustration with simulated data

> fit <- rq(y~x, data=dat, tau=.5)
> summary(fit)

Call: rq(formula = y ~ x, tau = 0.5, data = dat)

tau: [1] 0.5
Coefficients:

coefficients lower bd upper bd
(Intercept) 6.13147 5.91573 6.42189

X 0.10376 0.09776 0.11575



Statistical properties

Coefficient estimator

n
) . .
- . —xTb).
B(7) arggrelﬁ{g;pr(y, x; b)

Under regularity conditions Al and A2(i) (see next slide)

B(r) & B(r).



Statistical properties

Regularity conditions

Al. The distribution functions of Y given x;, Fi(-), are absolutely
continuous with continuous densities f;(-) that are uniformly
bounded away from 0 and oo at &(7) = Q- (Y|x;).

A2. There exist positive definite matrices Dy and D; such that
(i) limpyoo n713°0  x;x] = Dy;
(iD) limpooo n™t 351, £ (&(7)) xix] = Da(7);
(i) maxi—y_||xi|] = o(n?).

.....



Statistical properties

Asymptotic normality

Under Conditions Al and A2

Vi (B(r) - B(r)) 4 N (0.7(1 - 7)D*DoDTY) .

Simplification in the case of i.i.d. errors

Vi (Br) - 8r)) 4 v (0. 7505

where f;(£i(7)) = £(0).



Inference

» ldea: use asymptotic normality results to perform Wald-type
hypothesis tests and construct confidence intervals.

» Problem: Asymptotic covariance matrix involves the
unknown densities f;(x] 3(7)) in non-i.i.d. settings, and £(0)
in i.i.d. settings.

How do we estimate these?



Estimation in i.i.d. setting

Sparsity parameter

1
s(r) = )] (derivative of the quantile function F~1(t) with

respect to t)

Difference quotient estimator (Siddiqui,1960)

Fyl(t + hol%) — F2(t — holX)
2h, ’

é\n(t) =
where
» h, — 0 as n — oo,

» F71(t|%) is the estimated tth conditional quantile of Y given
x=n"1Y"0 x;.



Estimation in non-i.i.d. settings

Estimation of D;(7)

» Suppose the conditional quantiles of Y given x are linear at
quantile levels around 7.

» Then fit quantile regression at (7 & h,)th quantiles, resulting
in B(1 — hy) and B(7 + hp).

» Estimate £(&(7)) by
3 2h,
X BT+ o) — X[ — hn)

where &i(7) = Q- (Y|x)).

fi(&i(r))

“Hendricks-Koenker sandwich”



Implementation in R

Vv

# Assuming iid errors:
> summary.rq(fit, se="iid")

> # Hendricks-Koenker sandwich:
> summary.rq(fit, se="nid") # assuming non-iid errors
tau: [1] 0.5

Coefficients:

Value Std. Error t value Pr(>|tl)
(Intercept) 6.13147 0.17754 34.53611 0.00000
X 0.10376 0.00888 11.67973 0.00000

> # Based on Powell kernel estimator
> summary.rq(fit, se="ker")



Rank score test

> Model: Q(Y|x;,z;) =x]B(r) +z[v(r)
> Hypotheses: Hy: v(7) =0 vs Hi:v(r)#0
where 3(7) € RP and (1) € RY.

» Score function:
=VnY_ zi-(vi — % B(7)),
i=1

where

> 1/).,_(u) =7 — I(u < 0);
=(z7) =z — x(x"Wx) " xTWz, W = diag(f(Q-(Y|xi, z}));

>

z*
» B(7) is the quantile coefficient estimator under Ho.



Rank score test

» Under Hp, as n — oo,
1
Sp = AN(0, M2),
where M, = n=1 30 2z T7(1 — 7).
» Then the rank-score test statistic

T,=SIM1s, LN X<2;7 under Hp.

> In i.i.d. settings z* = (z}) = {I — x(x"x)"*x"}z and
M, =7(1—7)n"1Y7  2:2:T — no need to estimate the
nuisance parameters { Q- (Y|x;, z)}.

» The rank score test can be inverted to give confidence
intervals.



Implementation in R

The rank score method is the default method for standard error
and confidence interval estimation in library(quantreg):

> # assuming iid errors
> summary.rq(fit, se="rank", alpha=0.05, iid=TRUE)
> # assuming non-iid errors
> summary.rq(fit, se="rank", alpha=0.05, iid=FALSE)
tau: [1] 0.5
Coefficients:

coefficients lower bd upper bd
(Intercept) 6.13147 5.81521 6.54475

X 0.10376 0.08918 0.11880



Bootstrap methods

» An alternative approach is to use bootstrap for standard error
estimation

» Options include:
> residual bootstrap
> paired bootstrap
» Markov chain marginal bootstrap (MCMB)

L

» See boot.rq() in library(quantreg)

> summary.rq(fit, se="boot", alpha=0.05) # default: paired
tau: [1] 0.5

Coefficients:

Value Std. Error t value Pr(>|t])
(Intercept) 6.13147 0.20251 30.27766 0.00000
X 0.10376 0.00772 13.43691 0.00000



Nonparametric quantile regression

» The ideas of
> local polynomial models,
> regression splines,
> penalised splines,
introduced earlier, can be applied to quantile regression.

» Decisions about the order of the spline, number of knots or
penalty parameter need to be made.



Example: motorcycle data

» Locally linear approach using the 1prq function from
library(quantreg).

» This function computes a quantile regression fit at each of m
equally spaced x-values over the support of the observed x
points.

» The value of the smoothing parameter (bandwidth h) must be
provided.
> In R:

> library(MASS) # to get the mcycle data
> fitl <- lprq(mcycle$times,mcycle$accel ,h=.5,tau=0.5)
> £fit2 <- lprq(mcycle$times,mcycle$accel ,h=2,tau=0.5)



Local linear median regression fit for the motorcycle data
with h=0.5 and h=2
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Example: motorcycle data

» B-splines can be implemented using the function bs() in the
package splines in R.

» Here we control the level of smoothing via the degrees of
freedom.

> fit3 <- rq(accel™bs(times,df=5),tau=0.5, data=mcycle)
> fit4d <- rq(accel™bs(times,df=10),tau=0.5, data=mcycle)



Median regression fit using cubic B-splines with df=5 and
df=10 for the motorcycle data

milliseconds milliseconds



Example: motorcycle data

» Quantile smoothing splines using a roughness penalty can be

implemented via the rgss () function in library(quantreg)
in R.

» This function is quite flexible and allows specification of
monotonicity and convexity constraints.

> Penalty parameter A has to be specified by the user (default
value is lambda=1).

» In R:

> fith <- rqgss(accel”gss(times,constraint="N", lambda=1),
tau=0.5, data=mcycle)

> fit6 <- rqgss(accel”gss(times,constraint="N", lambda=0.5),
tau=0.5, data=mcycle)



Median regression fit for the motorcycle data using quantile
smoothing splines with penalty A =1 and A = 0.5.

milliseconds milliseconds



Remarks

» Spline methods are better than local linear methods in general.

» All methods require decisions to be made about the degree of
smoothing to be applied.

» Quantile crossing is an issue in general, and even more so with
nonparametric quantile regression, especially for 7 near 0 or 1.



Example: BMI distribution

Modelling Obesity in Scotland

Gary Napier' and Tereza Neocleous

Scottish Health Survey: 1995, 1998, 2003 and 2008

Quy ey (71X) = ag(7) + Z B )(year),

+ Z 7j(7)(social class);

+ gr(age)

g-(+) is a nonlinear function of age, approximated by a linear
combination of cubic B-spline basis functions with fixed knots at
age 35 and 49 (the 33rd and 66th percentiles of the age
distribution)



Example: BMI distribution
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Example: BMI distribution — year effect

log(BMI) as a function of year:

» No change in log(BMI) is observed between 1995 and 1998 at
the lower quantiles, but as 7 approaches 0.5 (median) an
increase is revealed, which is at its largest at the upper
quantiles.

> An increase in log(BMI) is observed between 1995 and
2003/2008 across the entire distribution, with log(BMI)
increasing with increasing values of 7. The increase in
log(BMI) is greater with each subsequent survey year, which
can be seen from the upward shift on the y-axis.



Example: BMI distribution — social class effect

log(BMI) as a function of social class:

> At the bottom of the distribution, log(BMI) is lower for each
social class than for social classes i & ii (baseline).

> As 7 approaches 0.5 no discernible difference in log(BMI) is
found between each social class and social classes i & ii.

> At the upper quantiles log(BMI) is generally higher than
baseline, but not always significantly so.

» Changes in sign of the regression coefficient across the
distribution highlight the benefits of quantile regression, as
such fluctuations cannot be detected by least squares
regression.



Example: BMI distribution — age effect

log(BMI)
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Example: BMI distribution — age effect

log(BMI) as a function of age:

» The rate of increase in log(BMI) with age is at its greatest in
the early years of adulthood and gradually diminishes before
starting to decrease at around 60 years of age.

» This increase is most prominent at the upper quantiles, where
the separation between social classes is also at its greatest.

» As the data is not longitudinal, we cannot distinguish between
generational effects and ageing.



Summary

Quantile regression

» Quantiles and quantile regression

v

Why use quantile regression? Reasons and examples

v

How to fit quantile regression models in R

v

How to fit nonparametric quantile regression models using
splines

» More examples in the lab
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