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Summary. Graphical methods such as colour shading and animation, which are widely
available, can be very effective in communicating uncertainty. In particular, the idea of
a ‘density strip’ (Jackson, 2008) provides a conceptually simple representation of a dis-
tribution and this is explored in a variety of settings, including the comparison of means,
regression and models for contingency tables. Animation is also a very useful device for
exploring uncertainty and this is explored particularly in the context of flexible models, ex-
pressed in curves and surfaces whose structure is of particular interest. Animation can
further provide a helpful mechanism for exploring data in several dimensions. This is ex-
plored in the simple but very important setting of spatiotemporal data.

Keywords: animation; density strip; graphics; spatiotemporal data; uncertainty.

1. Introduction

In 2010, the Royal Statistical Society launched a ten year statistical literacy campaign
with a discussion paper by Wild et al. (2011) on making statistical concepts accessible.
It is stating the obvious to say that graphical methods play a very important role in both
the communication of statistical information and concepts in a manner which is largely
free of technical language. There is, of course, a long tradition of the development of
innovation in statistical graphics. Examples include exploratory data analysis (Tukey,
1977), the careful visual design expressed in lattice graphics (Sarkar, 2008) and the
animation and interaction provided by systems such as XLisp-Stat (Tierney, 1988), ggobi
(Cook and Swayne, 2007) and Mondriaan (Theus and Urbanek, 2008). The ggplot2
system (Wickham, 2009), based on the ‘grammar of graphics’ (Wilkinson, 2005), is
proving increasingly popular through its combination of attractive graphical design and
flexibility. The wide variety of tools now available to general users is illustrated in the
handbook edited by Chen et al. (2008). There are also general tools for enabling user
interaction, provided for example in systems such as Shiny (Chang et al., 2016).

Despite this array of tools, the standard approaches to graphical display remain
those based on relatively simple point and line drawings, such as histograms, boxplots,
barcharts and scatterplots, supplemented occasionally by colour filling. However, to
those who are unfamiliar with statistical methods, the carefully positioned lines of a
boxplot, or the boundaries of a confidence interval, imply a precision, and encourage an
algorithmic approach to the evaluation of evidence, which is at odds with the concept of
uncertainty and variation. Of course, technicality and precision are very important but
the communication of results, and more informal evaluation of the statistical evidence
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Fig. 1. The top panel [interactive plot] illustrates the unpredictable nature of sampled ob-
servations and the accumulation of the ‘footprints’ of the data into a density strip representation
of a density estimate. The lower left hand panel shows several distributions in density strip form.
The lower right hand panel shows density strips constructed from data on aircraft speed, on a
log scale, for three different time periods.

they encapsulate, are greatly aided by graphical methods which clearly communicate
the uncertainties involved.

The focus of this paper is on graphical effects which can add considerable value in
the exploration of data and models in general and in the quantification of uncertainty
in particular. An example is provided by Jackson (2008) who introduced the concept
of a density strip to represent distributions by the simple device of a bar of colour
whose intensity is proportional to the density function at each location. This produces
a visually appealing display whose continuous gradations match well with the intuition
of what uncertainty means. This is illustrated in the upper panel of Figure 1 which

displays an animation when the pdf version of this paper is viewed in the Adober reader.
(Animated displays of this type are used repeatedly through the paper and are indicated
[interactive plot] in the plot legend.) Observations are displayed successively, in a
manner which represents the unpredictable ‘there it is - no, there it is’ nature of random
variation. Above the display of individual data points, the accumulated ‘footprints’ of
the observations build into a density strip, where intensity reflects the relative frequency
of observations at different locations. Use of a footprint with faded edges, centred on
the location of each observation, produces a smooth kernel density estimate in a manner
which can be appreciated entirely intuitively (with the role of the smoothing parameter
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refreshingly expressed in shoe size!). The lower left hand panel of Figure 1 represents
several distributions of standard form, where features such as skewness and bimodality
are all expressed in a perfectly clear but very compact manner. The right hand panel of
Figure 1 displays density estimates of data on the characteristics of aircraft design from
1914 to 1984, described by Bowman and Azzalini (1997), using log(Speed) separated into
three time periods (1: 1914-1935, 2: 1936-1955, 3: 1956-1984). The shifting locations
and sizes of the components are apparent. The ability to draw a distribution along a
single axis is particularly appealing. This fits well with the recommendation of Wild
et al. (2011) that plots should ‘stay in the same visual space’ as the data, in contrast
with a histogram which requires a second axis to display frequency.

Another graphical device which can be used to good effect is animation - a device
already employed in Figure 1. If animation is not carefully employed it may simply be
a distraction. Tversky et al. (2002) reviewed its use from a perceptual perspective and
identified that it was likely to be most effective in displaying changes over space and
time, particularly when user interaction was available. This is very often precisely the
context in which animation is used in statistical graphics. Hullman et al. (2015) carried
out a detailed study of displays of probability distributions employing static and ani-
mated graphics and concluded that the latter assisted in the perception of distributional
properties. It is clear from the wide differences in individual perceptions across viewers
that no graphic display will work effectively for everyone, but it also clear that animation
is a form of display which is effective for many.

This paper explores how these relatively simple graphical devices of colour shading
and animation can assist in the display of data, models and the associated uncertainty.
The methods are particularly geared towards communicating with those who do not
have technical statistical knowledge, but the aim is to do so in ways which are directly
compatible with more technical forms of analysis. Section 2 exploits density strips in
simple comparison of means and extends this to the assessment of evidence for inter-
action in analysis of variance and of association in contingency tables. Section 3 deals
with standard regression models while Section 4 considers how the uncertainty associ-
ated with the estimation of flexible curves, and particularly surfaces, can be displayed
through animation. Section 5 uses both colour shading and animation in addressing the
issue of displaying spatiotemporal data, now a commonly occurring data structure, and
associated spatiotemporal models. Some final discussion is given in Section 6.

2. Comparing models

2.1. Comparing means
The left hand panel of Figures 2 displays data on asymmetry scores derived from the
facial images of children in a study of the effects of corrective surgery on patients born
with a unilateral cleft lip (ucl) or cleft lip and palate (uclp). The context of the study
is described by Hood et al. (2004) while the methodology for measuring asymmetry
is described by Bock and Bowman (2006). The data plotted here show the change
in asymmetry scores from facial images captured at 3 months and 6 months of age.
Substantial change in asymmetry is expected for cleft cases over this period, as this is
when corrective surgery takes place. Interest here lies in whether there is any change



4 Adrian W. Bowman

−0.04 −0.02 0.00 0.02 0.04 0.06
Change in asymmetry score

●

●

●

●

●

●
●●

●

●●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

Fig. 2. The left hand panel displays data (blue points) on the change in asymmetry score of
control children from 3 months to 6 months. The density strips in grey reflect the distribution of
the data while the green line indicates the sample mean and the red line marks the reference
point of 0, corresponding to no change. The middle strip indicates the uncertainty associated
with the sample mean while the lower strip locates this at the reference value of 0. The right
hand panel displays asymmetry scores (blue points) at 3 months from ucl and uclp patient
groups, with the sample means marked as blue lines and with a measure of uncertainty of the
difference in means indicated by the green density strip.

in the mean asymmetry scores for controls. The differences (3 months - 6 months) are
plotted, with a grey density strip to highlight the underlying distribution and with the
sample mean x̄ and reference value 0 marked as lines. The data are shown as points,
with added vertical ‘jitter’ simply to avoid overplotting.

The middle strip in the left hand panel of Figure 2 highlights the uncertainty in
estimation of the true mean µ. In a Bayesian analysis, the posterior distribution of
the parameter of interest encapsulates all the relevant information and a density strip
provides a simple graphical expression of this. From a frequentist perspective, with se
denoting standard error and n denoting sample size, the key step in the argument is
the distribution of the pivotal quantity (x̄ − µ)/se(x̄), which has a tn−1 distribution
when an assumption of normality is appropriate. Instead of proceeding to a confidence
interval through the usual inversion argument, scaling the t distribution (or its standard
normal approximation) by the standard error expresses the distribution of the distance
between x̄ and µ. This may be regarded as a kind of ‘ruler’ which measures variation
and which, when placed at x̄, provides a graphical expression of uncertainty. This has
a direct correspondence with equivalent confidence intervals but it avoids the rather
sophisticated interpretation required for a detailed derivation. The middle strip of the
left hand panel of Figure 2 provides a clear indication that, when uncertainty is taken
into account, the evidence of change in mean asymmetry score from 3 months to 6
months is not convincing. An alternative approach is to centre the distribution at the
reference value of 0, as in the lower strip of the left hand panel of Figure 2, to express
uncertainty in the position of x̄ under the assumption that the true mean is 0. This
provides a simple graphical expression of the essential concepts of a hypothesis test,
without the need for complex explanations of p-values. (For the record, the p-value here
is 0.17.) This point is well made by Jackson (2008), who provides numerous additional
examples of the helpful uses of density strips.
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The right hand panel of Figure 2 extends this to the two-sample setting, here in the
comparison of asymmetry scores for ucl and uclp patients at 3 months. The higher
mean score for the uclp group is apparent (for the record, p < 0.001), with the central
density strip expressing the uncertainty in the size of the difference in mean scores. By
locating the 0 value on the difference scale at the smaller of the sample means, the
graphical display gives a clear indication of the plausible size of the difference. The
linking of the two scales aids interpretation and respects the principle advocated by
Wild et al. (2011) that graphics should remain in the same ‘visual space’ as the data.

The intention of these plots is to convey uncertainty through graphics which are based
on the usual technical constructs but which allow inferences to be drawn, and the size
and nature of effects identified, in an informal and conceptual manner. In particular,
the ‘fuzzy’ nature of a density strip aligns with an intuitive concept of uncertainty more
naturally than the precise end-points of confidence intervals.

2.2. Factor models
Figure 3 displays data on SO2 air pollution measured at three European sites in three
different years. Bowman et al. (2009) describe the wider dataset. The left hand panel
displays grey density strips for each data group, with red lines superimposed to indicate
the fitted values from a fitted linear model with site, year and interaction effects.

A simple two-way analysis of variance allows evidence for the presence of interaction
to be explored by the construction of an F-statistic which contrasts the residual sums-
of-squares from an additive and an interaction model. In this form, the F-statistic is
rather remote from the graphical representation of the data in Figure 3 but the algebra
of linear models (Seber, 1977) allows this to be expressed as a comparison of the fitted
values from the two models. For fitted values {ŷij , ŷij0 : i = 1, . . . , I; j = 1, . . . , J},
where the subscript 0 indicates the simpler additive model, the F-statistic becomes

F =

∑
i,j nij(ŷij − ŷij0)2/ν

σ̂2
=

1

IJ

∑
i,j

[
(ŷij − ŷij0)√
ν
IJ σ̂/

√
nij

]2
(1)

where ν denotes the difference in the degrees of freedom for the two models and σ̂ denotes
the estimate of error standard deviation from the larger model.

This is expressed graphically in the right hand panel of Figure 3, where normal distri-
butions, centred on the fitted values of the additive model and with standard deviations√

ν
IJ σ̂/

√
nij , are represented as density strips. These characterise the location, with

uncertainty, of the fitted values of the additive model, against which the fitted values
of the interaction model can be compared. The focus here is not on representing un-
certainty through the standard errors of the comparison of fitted values at each factor
combination, with suitable adjustment for the multiple comparisons involved, but in-
stead to indicate the individual contributions to the overall assessment of evidence for
the suitability of an additive model through the F-statistic. The marked mismatch, on
average, between the fitted values from the interaction model and the corresponding
ranges of values consistent with the additive model gives graphical expression to the
evidence that interaction is present. This can, of course, be made more precise by com-
paring the observed value of the F-statistic (3.18) with the F4,53 distribution. (There
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Fig. 3. The left hand panel displays data on SO2 pollution, with density strips to highlight the
groups. Red lines indicate the fitted values from an interaction model. The right hand panel uses
density strips to expresses the uncertainty in the comparison with the simpler additive model.

are 62 observations in the dataset.) In order to strengthen further the link with the
graphical comparison of fitted values, the test statistic and its reference distribution can
be expressed on a square root scale, with an interpretation as the root-mean-square dif-
ferences of the fitted values from the two models. The density strip representation of this

indicates a strong degree of mismatch, entirely consistent with the technical details of the
underlying F-test (which, for the record, produces a p-value of 0.020 in this example).

The aim of these examples is not to promote the use of significance tests, whose
overuse has rightly been criticised and whose interpretation is often misunderstood.
Instead, the aim is to advocate the use of a reference model against which the size
and nature of effects of interest can be evaluated, using appropriate graphics to provide
measures of uncertainty. These graphics are consistent with standard methods of analysis
of variance. The comparison of fitted values expressed in (1) can clearly be extended to
a wider range of linear models.

2.3. Contingency tables
Graphical methods for data in the form of contingency tables include ‘mosaic plots’
(Hartigan and Kleiner, 1981). A wider variety of approaches are discussed in Friendly
(2000) and Gelman et al. (2002). A famous example of a contingency table is provided
by the landmark study on the association between smoking and lung cancer, conducted
by Doll and Hill (1950), where the prevalence of smoking was examined in both lung
cancer patients and in a group of controls consisting of patients suffering from diseases
other than cancer. The vast majority of patients were men but Figure 4 shows the data
for women. The columns correspond to fixed sample sizes (60) drawn from the case
and control populations, while the horizontal lines mark the observed proportions of
smokers in each group. This is a simple form of mosaic plot where observed counts are
represented by the areas of the four displayed regions while the vertical axis focusses
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Fig. 4. Graphical display of data on cases and controls from a study of smoking and lung cancer
reported by Doll & Hill, with uncertainty enabling the presence of association to be assessed.

attention on the proportion scale, which is most relevant for comparison.
If the count over rows {i : 1, . . . , I} and columns {j : 1, . . . , J} are denoted by nij

and the . notation denotes summation over the indicated subscript, then the χ2 statistic
for a test of no association can be rewritten as

χ2 =
∑
i,j

(nij − ni.n.j/n..)2

ni.n.j/n..
=

1

IJ

∑
ij

(
p̂ij − p̂i0√
p̂i0/(n.jIJ)

)2

,

This is expressed as an average over the cells of a weighted distance between the fitted
values under the association (p̂ij = nij/n.j) and no-association (p̂i0 = ni./n..) models.
Uncertainty in the model comparison can then be represented by normal density strips
with means p̂0j and standard deviations

√
p̂i0/(n.jIJ). The small but clear separation

between the two models is apparent and the nature of the effect is clear in the ele-
vated proportion of smokers among the cases. The strength of the evidence expressed is
consistent with the p-value of 0.027 arising from the χ2 test.

3. Regression

The top graphic of Figure 5 illustrates data on the annual giving in pounds per church
member in the dioceses of the Church of England in the early 1980’s. Three relevant
covariates are also recorded for each diocese, namely the percentages of the population
who are employed (Employ), are on the electoral roll of the church (Elect) and who
usually attend church (Attend). Details are available in Pickering (1985).

Regression effects are usually assessed through the sign and size of the regression coef-
ficients. When covariates are measured on very different scales the associated regression
parameters are not immediately comparable. A simple device is to plot β̂iri for each of
the p covariates i = 1, . . . , p, where ri denotes the length of the range of observed values
of covariate i. This scaling of the parameter estimates then expresses the change in the
response variable across the length of each covariate axis. These values are displayed in
the lower left graphic in Figure 5, using normal density strips centred at β̂iri and with
standard deviations s.e.{β̂i}ri to represent the uncertainty. This allows the regression
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Fig. 5. The upper plots show data on giving in the Church of England against three covariates.
The lower plots show regression effects, scaled to allow direct comparisons, for two models with
different selections of covariates, using density strips to indicate the uncertainties involved.

effects to be directly compared with one another as they are now expressed on the re-
sponse (Giving) scale in a manner which is naturally associated with the scatterplots,
where the primary visual signal lies in the movement of the response across the range of
the covariate. Once again, this places the regression effects in the same ‘visual space’ as
the original data.

The lower left hand plot of Figure 5 shows a positive association between giving and
employment, while the associations with membership and attendance are less clear. In
fact, these latter two covariates are strongly related with one another, creating an issue
with multicollinearity. The lower right hand plot of Figure 5 shows that when only one of
these covariates is used, here attendance, then a very strong regression effect is apparent,
consistent with the impression given by the marginal scatterplots of the observed data.
The negative association between giving and attendance is interesting.

4. Curves and surfaces

There are many occasions when the relationship between a response and explanatory
variables needs to be modelled in a flexible, non-linear manner. Figure 6 shows an
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example in the form of a surface estimate constructed from a ‘catch score’ designed to
measure the quantity of marine life found in grabs from the sea bed off the Queensland
coast near the Great Barrier Reef. The explanatory variables here are latitude and
longitude. The source of the data is referenced in Bowman and Azzalini (1997) where
this subset and the construction of suitable surface estimates are described.

One challenging issue is how to display the uncertainty associated with this estimate.
Bowman (2006) shows how surfaces may be painted with colour to display specific in-
formation such as deviation from linearity, but the display of uncertainty in a more
general sense is more difficult. Information on standard errors is easily obtainable and
so it would be feasible to plot two additional surfaces, defined as two standard errors
below and above the estimate at every location, but this creates an entirely atypical
representation as it employs the extremes of variability at all points simultaneously. It
also requires several surfaces to be viewed simultaneously. Some authors plot a separate
surface to represent the standard errors at each location, or add further contours for
standard errors to the contour plots of the estimated surface. This can be difficult to
interpret because the standard errors and the surface estimates are on different scales or,
to use again the expression from Wild et al. (2011), they live in different ‘visual spaces’.

The two panels of Figures 6 propose two solutions to this problem, both using ani-
mation. The first is illustrated in the left hand panel, which is an interactive plot. As
locations are highlighted (in practice by clicking and dragging but here in a prepared
animation), a confidence interval, or variability interval as discussed by Bowman and
Azzalini (1997), is displayed against the colour key. This allows the user to interrogate
uncertainty at any locations of interest and so build up a picture of the uncertainty
pattern across the surface. This strategy does remain in the same visual space but it
also retains some of the difficulties in plotting standard errors described above and its
point-wise nature provides rather partial information.

A more satisfactory approach is to simulate surfaces which conform to the mean and
covariance properties of the estimate. This is straightforward to do, as the vast majority
of methods of flexible regression have estimates of the form m = Sy, where y denotes a
vector of response data, S denotes a ‘smoothing matrix’ constructed from the values of
the covariates, and m is a vector of estimated values, usually constructed at a regular
grid across the surface. Under an assumption of independent errors, an estimate of the
error variance σ2 can also be easily obtained. The details of the estimation process
are described by Bowman and Azzalini (1997) in the local linear case and are easily
accessible in the literature for other methods. The covariance of the estimated surface
points can then easily be estimated as Σ = SST σ̂2, where σ̂2 denotes the estimate of
error variance. It is then straightforward to simulate surfaces {m∗

i : i = 1, . . .} from the
multivariate normal distribution N (m,Σ).

The display of a series of unconnected simulated surfaces produces rather abrupt
visual transitions and a considerably improved effect is achieved by smoothly tracking
between these. It is important to ensure that the intermediate surfaces retain the in-
tended mean and covariance properties. Simple linear interpolation αm∗

1 + (1 − α)m∗
2,

for 0 ≤ α ≤ 1, between two simulated surfaces m∗
1 and m∗

2 does not achieve this as it
produces the correct mean, m, but an incorrect covariance, {α2 +(1−α)2}Σ. A solution
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Fig. 6. [interactive plots] The left hand panel shows a contour plot of a surface estimate
constructed from the Reef data, with an animation which displays against the colour key the
variability intervals attached to specific locations. The right hand panel shows a perspective
plot which animates smoothly through surfaces which illustrate the variability of the estimated
surface.

is provided by constructing intermediate surfaces as

m+
α√

α2 + (1− α)2
(m∗

1 −m) +
1− α√

α2 + (1− α)2
(m∗

2 −m),

as these have the correct mean and covariance structure. This is illustrated by the in-
teractive plot in the right hand panel of Figure 6. The smooth sequence of surfaces
displayed reflects the uncertainty in the estimate in an attractive visual manner. In-
tuitively, features of the surface which are retained across these simulations may be
regarded as systematic rather than the product of sampling variation. For example,
there is strong evidence that the plateau nature of the surface at low values of longitude
is a real feature. The animation could also have been presented in contour form but the
perspective plot is sometimes more effective, especially when combined with interactive
control of the viewing angles.

Where a Bayesian analysis is being conducted and m and Σ define a posterior distri-
bution, the interpretation of the simulated surfaces is clear and straightforward. From
a frequentist perspective, the issue of bias immediately causes a difficulty in the strict
interpretation of confidence regions which is why the terminology variability region is
sometimes used, as proposed by Bowman and Azzalini (1997). The sequence of simu-
lated surfaces can then be viewed as Monte Carlo exploration of the confidence ellipsoid
defined by the mean and covariance matrix. A further interpretation is available as a
parametric bootstrap procedure, where simulations are drawn from a fitted model.

While surfaces offer a more challenging case for the display of uncertainty, it is worth-
while considering whether the methods discussed above might also be used to good effect
in the context of estimating flexible curves. Figure 7 displays the data on catch score
plotted as a function only of longitude, which is the dominant effect. The left hand
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Fig. 7. Plots of catch score against longitude. The left hand panel displays uncertainty through
density strips at a fine grid of values of longitude. The right hand panel [interactive plot]
shows an animation which displays uncertainty through a smooth sequence of simulated curves.

panel expresses the uncertainty in the estimation of the relationship between longitude
and catch score by displaying a density strip for the position of the curve at a fine grid
of values of longitude. This provides a very effective display which avoids the in/out
interpretation promoted by drawing the end points of confidence bands, as discussed by
Jackson (2008) in other examples. The use of a density strip avoids the need to display
a single curve estimate at all – a point made by Spiegelhalter et al. (2011) in other curve
estimation settings.

The interactive plot in the right hand panel shows an animation which illustrates
the uncertainty through a smooth sequence of simulated curves, produced in exactly the
same manner as the surfaces discussed above. As in the case of surfaces, the additional
information on covariance, which this display incorporates, is very helpful in assessing
features of the curve which persist throughout the simulations and which may therefore
be regarded as systematic features rather than sampling variation.

Although the examples of this section have involved individual surfaces and curves,
the same methods apply to curves and surfaces which are components of more general
models, particularly additive models which may involve multiple covariates and model
terms.

5. Spatiotemporal data and models

Spatiotemporal data, where measurements of a response of interest are indexed by both
space and time. have become very common, leading to considerable research into suitable
models. Cressie and Wikle (2011) provide an excellent introduction to the topic and
comment on the lack of suitable graphical methods for exploring spatiotemporal data.
The two graphical graphical themes of earlier sections, namely density shading and
animation, can also be used to good effect in this setting. Figure 8 plots data on log
SO2 pollution across Europe. (A subset of these data were used in Section 2 above.)
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Bowman et al. (2009) describe the data and construct a spatiotemporal model involving
spatial, temporal and seasonal effects and interactions.

The top left hand panel of Figure 8 plots the spatial locations of the observations
within a specific time window, using colour to indicate the value of the pollution level
of each observation. This is an interactive plot which allows the time evolution of the
pollution measurements to be explored in a more effective manner than the simultaneous
viewing of a set of static plots for selected time windows. The animation employs a
time window whose width is indicated in the horizontal bar. The shading shown here
indicates that the time window is in fact created by a filter, or weight, function, which
allows observations to move smoothly into and out of the plotted data. This is achieved
by using the hue-saturation-value (hsv) form of colour representation (see Manjunath
et al., 2001) and down-weighting the saturation component according to its distance
from the current centre of the time window. The effect of these operations is to create
a smooth transition as observations enter and leave the plotted data.

The lower panels of Figure 8 show how the time patterns at specific spatial locations
can also be explored, where a click on the left hand panel identifies a spatial region within
which the pollution values are plotted over time and which may then be dragged across
the plotting area. This is a form of interaction with plots known as ‘brushing’ (Becker
and Cleveland, 1987) which has been adapted here to the spatiotemporal setting.

Bowman et al. (2009) proposed a flexible regression model for log SO2 (y) with terms
involving spatial location (s, two-dimensional), time in years (t) and month (z), the last
to reflect the seasonal signal. In standard model notation, this can be expressed as

y = µ+ms(s) +mt(t) +mz(z) +ms(s) : mt(t) +ms(s) : mz(z) +mt(t) : mz(z) + ε,

where m denotes a smooth function, : denotes interaction terms and ε is an error term.
This model was fitted by Bowman et al. (2009) through local linear regression and the
backfitting algorithm. Here a p-spline representation of each smooth function is used,
as described by Eilers and Marx (1996), with 6 and 12 degrees of freedom for one and
two-dimensional terms respectively. The behaviour of the error term ε is modelled by
a separable combination of a spherical covariance function exp(−(ds/ν)2) of spatial dis-
tance ds and temporal correlation of AR(1) form on a monthly scale, with correlation
parameter ρ. For convenience, the estimated values of ν̂ = 0.098 and ρ̂ = 0.569 re-
ported by Bowman et al. (2009) are used. After estimation of model terms by penalised
likelihood based on independent errors, with estimated standard deviation 0.793, an
estimated covariance matrix can then be used to construct adjusted standard errors.
Bowman et al. (2009) give the details.

The top right hand panel of Figure 8 shows the interaction of the spatial and seasonal
terms ms(s) : mz(z). These are the adjustments to an additive model required to de-
scribe the SO2 patterns effectively. (This is a case where controls to display the patterns
at particular positions are very helpful.) To highlight the need for these adjustments,
contours corresponding to 2 or more standard errors from 0 draw attention to the areas
where the evidence for interaction is strong. The animation goes on to display the main
effects and interaction together, µ + ms(s) + mz(z) + ms(s) : mz(z). Here the plot is
dominated by the main effects but the contours remain to highlights the presence of
the interaction term. This is an example of graphical display involving not only data



Graphics for uncertainty 13

Fig. 8. [interactive plots] The top left panel plots SO2 pollution at spatial locations of within
specific time windows. The top right panel displays the spatial and seasonal terms from a fitted
spatiotemporal model. The lower left panel highlights with a circle a spatial region for which the
pollution values are plotted over time in the lower right panel.

but also a sophisticated model which is able to provide clear insight into a complex
environmental process.

Figure 8 was created through the rp.spacetime function in the rpanel package
(Bowman et al., 2007) for R (R Development Core Team, 2013). Jones et al. (2014)
describe software which creates spatiotemporal animations in a convenient automatic
manner, specifically designed for the context of groundwater monitoring.
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6. Discussion

The graphics discussed in the paper aim to provide displays of uncertainty which are
intuitive, particularly for non-technical audience, but which are aligned as closely as
possible with the technical construction of the underlying inferential methods. One
underlying theme has been the use of colour intensity shading to provide graphics which
are more consistent with the ‘fuzzy’ nature of uncertainty and which counteract the
‘inside/outside’ interpretation of confidence intervals, building on the work of Jackson
(2008). A second theme has been the use of animation which, in particular, allow
graphics to remain in the same visual space as the data and model of interest.

Colour selection is an important general issues as this has major implications for the
perception of changes across categories or along continuous scales. This is a broad topic
which is very helpfully discussed by Zeileis et al. (2009).
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